首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ML.NET 3.0 增强了深度学习和数据处理能力

开源 ML.NET 框架[2]的主要卖点,旨在帮助开发人员能够使用C#和F#构建自定义ML模型并将其集成到应用程序中。...“NER和QA训练器都包含在 Microsoft.ML.TorchSharp 3.0.0包[3]和命名空间Microsoft.ML.TorchSharp中。...扩展的数据加载功能:包括使用 ADO.NET 的 SQL 数据库的导入和导出功能。此外,可以从任何IEnumerable集合加载数据并将其导出到System.Data.DataTable ....AutoML 可自动将机器学习应用于数据的过程,也得到了增强,增强了模型生成器和 ML.NET CLI 中的相关体验。 有关上述所有更改和其他更改的更多信息,请参见 发行说明[4] ....展望未来,开发团队现在正在制定 .NET 9 和 ML.NET 4.0 的计划,模型生成器和 ML.NET CLI 预计将更快地更新,以便使用 ML.NET 3.0 版本。

44510

使用ML.NET训练一个属于自己的图像分类模型,对图像进行分类就这么简单!

并且本文将会带你快速使用ML.NET训练一个属于自己的图像分类模型,对图像进行分类。...ML.NET框架介绍 ML.NET 允许开发人员在其 .NET 应用程序中轻松构建、训练、部署和使用自定义模型,而无需具备开发机器学习模型的专业知识或使用 Python 或 R 等其他编程语言的经验。...框架源代码 ML.NET官方提供的使用示例 https://github.com/dotnet/machinelearning-samples ML.NET使用环境安装 安装本机.NET环境 首先需要准备好本机的...ML.NET Model Builder 组件介绍:提供易于理解的可视界面,用于在 Visual Studio 内生成、训练和部署自定义机器学习模型。...准备好需要训练的图片 训练图像分类模型 测试训练模型的分析效果 在WinForms中调用图像分类模型 调用完整代码 private void Btn_SelectImage_Click(

29110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    .NET机器学习 ML.NET 1.4预览版和模型生成器更新

    但是,这个新的数据库加载器为您提供了一个更简单的代码实现,因为它是从数据库中读取数据并通过IDataView提供数据,这是ML.NET框架提供的,所以您只需要指定数据库连接字符串,数据集列的SQL语句是什么以及加载数据时要使用的数据类是什么...例如,通过此功能,您可以使用 ML.NET API 本地训练TensorFlow模型来使用自己的图像进行训练,从而创建自己的自定义图像分类器模型。...图像分类器场景 - 使用ML.NET训练您自己的自定义深度学习模型 ? 为了使用TensorFlow,ML.NET内部依赖于Tensorflow.NET库。...初始v3是在ImageNet数据集上训练的广泛使用的图像识别模型。那些经过预先训练的模型或架构是多年来由多位研究人员开发的许多想法的顶点,您现在可以轻松利用它。...当然,您仍然可以在旧版本上运行ML.NET,但是当在.NET Framework或.NET Core 2.2及更低版本上运行时,ML.NET使用硬编码为基于x86的SSE指令的C ++代码。

    1.9K30

    使用ML.Net和CSharp语言进行机器学习

    ML.Net项目0.2版本只适用于.net Core 2.0和.net Standard2.0,只支持x64架构(目前Any CPU选项的编译方式还不能用)。...训练和预测模块共享对前面提到的Model.zip文件(大部分是手工复制的——请参阅下面的详细信息)的引用、对ML.Net库的引用以及模型项目中定义的数据输入和分类输出的通用模型: ?...通过ClassificationData定义使用文本输入的训练管道如下所示: ? ML.Net框架附带了一个可扩展的管道概念,其中可以插入不同的处理步骤,如上面所示。...您可以再次使用预测项目从文件系统加载模型,并使用进一步的输入对其进行测试。 到目前为止讨论的项目表明,ML.Net可以帮助以自动方式确定二元(二进制)分类。...IrisClassification solution的训练模块来训练不同的学习者和设置,并使用预测模块使用先前确定的模型来预测新的分类。

    2.4K30

    在 ML.NET 中使用Hugginface Transformer

    ML.NET 集成的ONNX运行时,Hugginface提供了一种以ONNX格式导出Transformers的方法。...基本上,您可以在一个机器学习框架(如PyTorch)中训练模型,保存它并将其转换为ONNX格式。然后,您可以在不同的框架(如 ML.NET)中使用该 ONNX 模型。这正是我们在本教程中所做的。...当我们使用预训练的模型时,这非常有用,就像我们在本文想用的Hugginface Transformers。 ONNX 运行时 它旨在加速跨各种框架、操作系统和硬件平台的机器学习。...而且 ONNX提供了比Huggingface更快的运行时,所以我建议在ONNX中使用Huggingface模型。...ML.NET 加载 ONNX 模型 在使用ML.NET 加载ONNX 模型之前,我们需要检查模型并找出其输入和输出。 我们使用Netron。我们只需选择创建的模型,整个图形就会出现在屏幕上。

    1.1K10

    使用C# 探索 ML.NET 中的不同机器学习任务

    所有这些因素结合在一起,使 ML.NET 成为一种非常有效的方式,可以使用您已经拥有的应用程序和您已经知道的技能来处理机器学习任务。...performing trained model ITransformer bestModel = result.BestRun.Model; return bestModel; } 除此之外,使用经过训练的多分类模型的代码与使用二元分类模型的代码非常相似...与二元分类模型一样,可以在不使用 AutoML 的情况下使用多类别分类模型。 回归 回归任务涉及在给定一组特征的情况下预测数值。...与这两种分类模型类型一样,在训练回归模型时也可以不需要使用 AutoML,但如果对各个算法的了解有限,则可能会很有帮助。 推荐 推荐算法是回归算法的变体。...对象检测是 Azure 认知服务的一部分,当前它只能通过模型生成器在 ML.NET 中使用。

    1.5K40

    微软发布ML.NET 1.0

    https://github.com/dotnet/machinelearning 入门@ -http://dot.net/ml ML.NET允许您使用C#或F#训练,构建和发布自定义机器学习模型,用于情景分析...模型生成器预览 为了简化.NET开发人员构建ML模型的过程,我们今天也很高兴地宣布ML.NET模型构建器。使用ML.NET模型构建器,只需右键单击即可将机器学习添加到您的应用程序中!...Model Builder是一个简单的UI工具,供开发人员使用AutoML使用您提供的数据集构建最佳的ML模型。...ML.NET CLI是一个dotnet工具,允许使用AutoML和ML.NET生成ML.NET模型。ML.NET CLI快速遍历您的数据集以获取特定的ML任务(目前支持回归和分类)并生成最佳模型。...在Azure上横向扩展以进行模型培训和消费 使用模型构建器和CLI时,支持其他ML方案和功能 用于Apache Spark和ML.NET的.NET大规模机器学习的本机集成 .NET中的新ML类型,例如DataFrame

    94120

    ML.NET介绍:最常使用的数据结构IDataView

    ML.NET一种跨平台的开源机器学习框架。ML.NET将让广大.NET开发人员可以开发自己的模型,并且将自定义的机器学习融入到其应用程序中,无需之前拥有开发或调整机器学习模型方面的专业知识。...能够支持诸多机器学习任务,比如说分类(比如文本分类和情绪分析)以及回归(比如趋势预测和价格预测),使用模型用于预测,还包括该框架的核心组件,比如学习算法、转换和核心的机器学习数据结构。...注意,行游标不是线程安全的;它应该在单个执行线程中使用。但是,多个游标可以在相同或不同的线程上同时活动。 延迟计算:当只请求列的一个子集或行的一个子集时,可以并且通常避免对其他列和行的计算。...一旦您获得了模型(通过Fit()训练的transforme,或者从某处加载的transforme),您就可以使用它对model. transform (data)的常规调用进行预测。...然而,当您在实际场景中使用这个模型时,您通常没有太多的例子可以预测。相反,您每次只有一个示例,您需要立即对它们做出及时的预测。

    1.8K41

    C#使用ML.Net完成人工智能预测

    前言 Visual Studio2019 Preview中提供了图形界面的ML.Net,所以,只要我们安装Visual Studio2019 Preview就能简单的使用ML.Net了,因为我的电脑已经安装了...车费 行程时间、距离 图像分类 预测花卉的类别 花卉图像 花卉类型:雏菊、蒲公英、玫瑰、向日葵、郁金香 图像数据本身 建议 预测他人喜欢的电影 电影评分 用户、电影 评级 选择完预测数据文件,我们配置要预测的列...再打开ModelBuilder文件,可以看到,这里一开始就配置了数据地址和模型地址,如下图: ? 到这里,我们ML.Net就算初步学会使用了,下面,再提供一个官网GIF图片供大家参考。 ?...训练时长 模型生成器使用 AutoML 浏览多个模型,以查找性能最佳的模型。 更长的训练周期允许 AutoML 通过更多设置来浏览更多模型。...ML.Net完成人工智能预测的基本使用已经介绍完了。

    1.2K20

    译 | 宣布ML.NET 1.2 及模型生成器更新(用于 .NET 的机器学习)

    用于 TensorFlow 和 ONNX 模型的ML.NET包正式发布 ML.NET被设计为可扩展的平台,因此您可以使用其他流行的 ML 模型,如 TensorFlow 和 ONNX 模型,并可以访问更多的机器学习和深度学习方案...具体而言,该包允许开发人员使用Microsoft.Extensions.ML使用依赖项注入加载ML.NET模型,并在多线程环境(如 ASP.NET Core 应用)中优化模型的执行和性能。...扩展对 .txt 文件和更多值分隔符的支持 用户现在可以使用 .txt 文件来训练模型。在初始预览中,模型生成器仅支持 .csv 和 .tsv 文件。...训练数据大小没有限制! 根据流行的请求,我们删除了对训练数据大小的 1GB 限制。开发人员现在可以上载任何大小的文件。 大型数据集训练时间的智能默认值 默认训练时间现在根据数据的大小进行设置。...更新至 ML.NET 1.2 模型生成器使用最新版本的ML.NET生成的代码将引用 1.2。在早期的预览版中,它使用ML.NET 1.0。 解决客户反馈的问题 此版本中修复了许多问题。

    1.1K30

    C#开源跨平台机器学习框架ML.NET----二元分类情绪分析

    右键项目引用选择管理NuGet管理嚣后在浏览里搜索ML,然后找到Microsoft.ML和Microsoft.ML.FastTree进行安装 02 创建训练模型 我们自己创建一个txt文件的训练模型...其中上面的属性LoadColumn(数字)对应着我们的qingxudata.txt里面的列。 qingxufenxi.cs ?...上面为主界面的面局,我们的主窗体界面加入两个textBox,一个输入,一个显示用的,然后加入三个按钮 05 代码实现 流程 进行情绪分析的实现顺序 加载数据 生成和定型模型 评估模型 使用模型进行预测..._filepath:为我们的txt训练文件。 _mlContext:MLContext 类,所有 ML.NET 操作的起点。...初始化 mlContext 会创建一个新的 ML.NET 环境,可在模型创建工作流对象之间共享该环境。 从概念上讲,它与实体框架中的 DBContext 类似。

    1K21

    机器学习框架

    模型构建:提供构建和训练模型的工具和算法。 模型评估:提供评估模型性能的方法。 部署:帮助将训练好的模型部署到生产环境。 使用机器学习框架的优势包括: 提高效率:减少从头开始编写算法的时间。...它允许开发者轻松构建和训练复杂的神经网络模型。TensorFlow 的核心是一个使用数据流图的计算引擎,这些图在图中的节点(称为“张量”)之间流动。...PyTorch 的设计允许用户轻松地构建和修改神经网络模型,支持各种类型的模型训练。...优势和劣势 优势: 灵活性: 动态计算图允许在运行时构建和修改计算图,使得调试和实验更加容易。 易用性: PyTorch 的 API 设计接近于 Python 的工作方式,易于上手。...强化学习: 使用Keras进行强化学习模型的构建和训练。 Keras 特别适合于快速构建和实验深度学习模型,尤其适合初学者和需要快速原型开发的研究人员。

    8410

    使用ML.NET模型生成器来完成图片性别识别

    借助 ML.NET,可以通过指定算法来训练自定义模型,也可以导入预训练的 TensorFlow 和 ONNX 模型。...了解ML.NET模型生成器 ML.NET 模型生成器是一个直观的图形化 Visual Studio 扩展,用于生成、训练和部署自定义机器学习模型。...模型生成器会生成将模型添加到 .NET 应用程序的代码。 值得注意的是,目前ML.NET 模型生成器是属于预览版,需要先启用此预览功能: ? 接下来,我们将使用此模型生成器来生成图片性别生成的代码。...ML.NET 模型保存为 zip 文件。 用于加载和使用模型的代码会以新项目的形式添加到解决方案中。 模型生成器还会添加一个示例控制台应用,可以运行该应用来查看工作状态下的模型。...此外,模型生成器还会输出生成模型的代码,以便你能了解生成模型所使用的步骤。 还可以通过模型训练代码使用新的数据重新训练模型。添加代码如下所示: ?

    1.6K10

    C#开源跨平台机器学习框架ML.NET----介绍与环境搭建

    () 来训练模型 评估模型并通过迭代进行改进 将模型保存为二进制格式,以便在应用程序中使用 将模型加载回 ITransformer 对象 通过调用 CreatePredictionEngine.Predict...用于查找模型参数的数据称为训练数据。机器学习模型的输入称为特征。 Size是唯一的特征。用于训练机器学习模型的真值称为标签。Price值是标签。 ?...更复杂 更复杂的模型使用事务文本描述将金融事务分类为类别。 通过删除冗余的字词和字符,以及对字词和字符组合进行计数,每个事务描述都被分解为一组特征。该特征集用于基于训练数据中的类别集训练线性模型。...新描述与训练集中的描述越相似,它就越有可能被分配到同一类别。 ? 房屋价格模型和文本分类模型均为线性模型。根据数据的性质和要解决的问题,还可以使用决策树模型、广义加性模型和其他模型。...我们重新看一下现在平台改为x64了,到这里ML.NET的框架就搭建完成了。 ? 下一篇开始我们就介绍ML.NET的使用方法。

    3.2K21

    .NET 9 的新亮点:AI就绪 ,拥抱她

    完整的 Keras API 现在也采用 C# 语言: 使用 cppSharp 生成的新的高性能 C# 绑定 自定义 C# 运算的自动微分支持 Keras API 完全用 C# 实现,允许无缝的模型定义和训练...这为使用对话式 AI、动态内容生成和 AI 驱动功能(如音频转录和文本转语音生成)构建更智能的 .NET 应用程序提供了大量可能性。 3、ONNX 运行时原生支持 无需再费力地进行单独的软件包安装。...此外,它们还可以更轻松地在 ONNX Runtime、TorchSharp 或 ML.NET 等库之间共享数据、创建自己的数学库或使用 AI 模型开发应用程序。...开发人员需要在开发和生产环境中测量和跟踪LLM 应用程序的结果和行为,并识别和解决任何问题。 性能监控:我们想知道我们的模型运行速度有多快,它们使用了多少内存,以及它们处理负载的情况。...模型偏差检测:随着世界的变化,模型会随着时间的推移而过时。我们需要工具来捕捉模型的性能何时开始下滑,这样我们就知道是时候进行重新训练了。 可解释性和透明度:AI 不应该是一个黑匣子。

    4400

    微软发布开源跨平台机器学习框架ML.NET 0.2版本

    这个版本侧重于添加新的ML任务,比如集群,使验证模型更容易,为ML.NET示例添加一个全新的repo,并解决我们在GitHub repo中收到的各种问题和反馈。...Iris Flower示例演示了如何使用ML.NET 0.2中的集群 通过交叉验证和培训测试更容易进行模型验证 交叉验证是一种验证模型统计性能的方法。...它不需要单独的测试数据集,而是使用您的训练数据来测试您的模型(它将数据划分为不同的数据,以便进行培训和测试,并多次执行)。使用ML.NET 0.2,您现在可以使用交叉验证,这里有一个很好的例子。...CollectionDataSource的数据对象进行训练 net 0.1允许从带分隔符的文本文件加载数据。...虹膜数据集聚类分析(聚类) 这个示例演示了如何通过对Iris数据集执行集群分析,从而使用ML.NET构建集群模型。

    44020

    微软开源 ML.NET 跨平台机器学习框架,AI 普及又向前跨进一步

    利用 ML.NET,开发人员可以直接上手已有的模型,无需具备开发或调节机器学习模型的专业知识。...ML.NET 由微软研究院研发,在过去的十年里发展成为一个重要的框架,它在微软的许多产品团队中都有使用,比如 Windows、必应、Azure 等等。...除了宣布支持以上任务,微软一并发布了用于训练模型、进行预测的 .NET API 的初稿,此外还有这一框架的核心组成部分,比如学习算法、转换和核心机器学习数据结构。...ML.NET 还增加了 Azure Machine Learning 和 Cognitive Service 的一些已有经验,它允许使用代码优先的方法,支持本地应用程序部署,让用户能构建自己的模型。...下面是关于 ML.NET 的更多细节: ML.NET Core Components ML.NET 是作为 .NET Foundation 的一部分推出的,repo 中包含了训练和消耗模型的 .NET

    42520

    ML-Framework:ML.NET 0.3 带来新组件

    Microsoft希望.NET开发人员能够设计自己的ML模型并将其集成到他们的应用程序中,而无需构建特定的专有技术,让AI技术平民化。...ML.NET 0.3现在提供了许多用于训练机器学习模型的新组件以及以流行的ONNX格式导出模型的选项,当然还包括了许多Bug修复。...ML.NET 0.3中新增的训练模块(Learner)适用于不同的分类要求。...作为所谓的流式学习器,FFM也可以应用于数据集,而无需将它们完全加载到存储器中。 使用LightGBM,您可以训练需要二进制和多类分类或回归的模型。...LightBGM是分布式机器学习工具包(DMTK)的一部分,它基于决策树算法。在ML.NET 0.3中,可以使用LightGBM的所有功能 - 除了排名评估器,预计将在更高版本中提供。

    48820

    微软释出ML.NET 1.1,加入异常侦测演算法

    微软在ML.NET 1.0中加入自动化机器学习AutoML功能,能自动决定使用于资料的演算法,帮助开发者快速建立机器学习模型。...在之前的ML.NET版本中,当开发者在模型中处理图像时,像是以TensorFlow或是ONNX模型为图像评分时,开发者需要指定磁碟中的路径,从档案中载入图像,但在ML.NET 1.1中,开发者可以使用记忆体中的图像...,特别的是,这个演算不需要任何事先的训练,可以开箱即用。...而在ML.NET 1.0加入的模型建置工具,能够为开发者在Visual Studio中,提供视觉化介面建置、训练和客制化自定义机器学习模型,并支援自动化人工智慧功能,自动探索资料适用的机器学习演算法和设定...微软持续更新这个模型建置工具,在ML.NET 1.1版本中,增加了新的问题分类样板,让开发者可以分类表格资料,其使用多重分类法,可以将资料分成三个以上的类别,适合的情境像是电子邮件分类或是GitHub问题等

    64910
    领券