首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据清洗之 透视图与交叉表

透视图与交叉表 在数据分析中,数据透视表是常见的工具之一,需要根据行或列对数据进行各个维度数据的汇总,在pandas中,提供了相关函数解决此类问题 交叉表更多用于频数的分析 pivot_table(data...values:分组的字段,只能为数值型变量 aggfunc:聚合函数 fill_value: 缺失值填补 margins:是否需要总计 (字段均值/总和) margins_name: 总计名称 pd.crosstab...as pd import numpy as np import os os.getcwd() 'D:\\Jupyter\\notebook\\Python数据清洗实战\\数据清洗之数据统计' os.chdir...('D:\\Jupyter\\notebook\\Python数据清洗实战\\数据') df = pd.read_csv('online_order.csv', encoding='gbk', dtype...2 952198 8 rows × 20480 columns # 不同折扣下的样本

1.5K127
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas系列7-透视表和交叉表

    透视表pivot_table是各种电子表格和其他数据分析软件中一种常见的数据分析汇总工具。...根据一个或者多个键对数据进行聚合 根据行和列上的分组键将数据分配到各个矩形区域中 一文看懂pandas的透视表 Pivot_table 特点 灵活性高,可以随意定制你的分析计算要求 脉络清晰易于理解数据...关于pivot_table函数结果的说明: df是需要进行透视表的数据框 values是生成的透视表中的数据 index是透视表的层次化索引,多个属性使用列表的形式 columns是生成透视表的列属性...Crosstab 一种用于计算分组频率的特殊透视表。...examples\tips.csv") df.head() # 目的:展示每天各种聚会规模的数据点的百分比 # 交叉表crosstab 可以按照指定的行和列统计分组频数 party_counts =

    1.2K11

    在pandas中使用数据透视表

    什么是透视表? 经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视表可以快速抽取有用的信息: ? pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据表如下: ?...总结 本文介绍了pandas pivot_table函数的使用,其透视表功能基本和excel类似,但pandas的聚合方式更加灵活和多元,处理大数据也更快速,大家有兴趣可探索更高级的用法。

    2.8K40

    在pandas中使用数据透视表

    经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: 而数据透视表可以快速抽取有用的信息: pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...它们分别对应excel透视表中的值、行、列: 参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: 如何使用pivot_table?...首先导入数据: data = pd.read_excel("E:\\订单数据.xlsx") data.head() 接下来使用透视表做分析: 计算每个州销售总额和利润总额 result1 = pd.pivot_table

    3K20

    数据透视表入门

    今天跟大家分享有关数据透视表入门的技巧! 数据透视表是excel附带功能中为数不多的学习成本低、投资回报率高、门槛低上手快的良心技能!...对于日程的排序、汇总、转换、提取等,他都可用统统拿下,替代了很多需要使用复杂函数嵌套、高级筛选甚至VBA才能完成的高级数据处理技巧!...然后我们将利用几几步简单的菜单操作完成数据透视表的配置环境: 首先将鼠标放在原数据区域的任一单元格,选择插入——透视表; 在弹出的菜单中,软件会自动识别并完成原数据区域的选区工作。 ?...你需要做的是定义好数据透视表的输出位置: 新工作表:软件会为透视表输出位置新建一个工作表; 现有工作表:软件会将透视表输出位置放在你自定义的当前工作表目标单元格区域。...此时你选定的透视表存放单元格会出现透视表的 布局标志,同时在软件右侧出现数据透视表字段菜单,顶部菜单栏也会自动出现数据透视表工具菜单。

    3.6K60

    数据透视表多表合并

    今天跟大家分享有关数据透视表多表合并的技巧!...利用数据透视表进行多表合并大体上分为两种情况: 跨表合并(多个表在同一工作薄内) 跨工作薄合并(多个表分别在不同工作薄内) 跨表合并(工作薄内表合并) 对于表结构的要求: 一维表结构 列字段相同 无合并单元格...在弹出的数据透视表向导中选择多重合并计算数据区域,点击下一步。 选择创建自定义字段,继续点击下一步。 ? 在第三步的菜单中选定区域位置用鼠标分别选中四个表的数据区域(包含标题字段)。...合并步骤: 与工作薄内的表间合并差不多,首先插入——数据透视表向导(快捷键:Alt+d,p) 选择多重合并计算字段——创建自定义字段。 ? 将两个工作薄中的四张表全部添加到选定区域。 ? ?...然后选中其中一个字段的及数据区域用鼠标拖动位置(选中销售金额就往右侧拖动,如果选中销售数量那就往左拖动。) ? 透视表的样式可以通过套用表格样式随意调整。

    9.7K40

    数据分析必备技能:数据透视表使用教程

    2 创建数据透视表 此处将工作表重命名为sheet1 首先确保表格第一行是表头 点击表中任意位置 选中 Ribbon 中的“插入” 点击第一个图标“数据透视表”,出现“创建数据透视表”对话框 ?...3 数据透视表中的字段 在“数据透视表生成器”菜单中,选择“球队、平、进球、失球、积分、更新日期”几个字段 ?...暂时关闭“数据透视表生成器” 该窗口随后可以用“字段列表”按钮重新打开 ? 此时一个基本的数据透视表已经成型 ?...以上就是创建数据透视表的基本过程。 7 自动化创建 基本的数据透视表的创建和调整并不复杂,但如果有很多类似的重复性工作的话,使用一些简单的 VBA 来自动化这一过程,将极大提升工作的效率。...本例中使用 VBA 脚本完成与上述例子一样的任务,对于 VBA 语言仅做简单注释,想更多了解可以自行查阅官方的文档等 1.一键生成 此处我们放置一个按钮在源数据所在的数据表,用于每次点击自动生成一个数据透视表

    4.7K20

    pivottablejs|在Jupyter中尽情使用数据透视表!

    大家好,在之前的很多介绍pandas与Excel的文章中,我们说过「数据透视表」是Excel完胜pandas的一项功能。...Excel下只需要选中数据—>点击插入—>数据透视表即可生成,并且支持字段的拖取实现不同的透视表,非常方便,比如某招聘数据制作地址、学历、薪资的透视表 而在Pandas中制作数据透视表可以使用pivot_table...pivottablejs 现在,我们可以使用pivottablejs,可以让你在Jupyter Notebook中,像操作Excel一样尽情的使用数据透视表!...接下来,只需两行代码,即可轻松将数据透视表和强大的pandas结合起来 from pivottablejs import pivot_ui pivot_ui(df) 就像上面GIF展示的一样,你可以在...pandas的强大功能与便捷的数据透视表操作,可以兼得之! -END-

    3.8K30

    插入数据透视表的4种方式

    一 普通表插入 这是我们常见的普通表 也就是输入标题文字数字就是的表 依次点击[插入]→[数据透视表] 最后点击确定就会生成透视表啦 ↓↓↓下面是动图 注意,这个过程中可能会出现缺少标题错误...这种情况下一般是在标题行有单元格为空 检查下,填入标题就好 二 超级表插入 这里说的超级表 是你点击的时候上面会多出一个菜单栏的表中表 这个插入透视表更简单 直接在菜单点击[透过数据透视表汇总...]即可 ↓↓↓下面是动图 三 外部数据源插入 这一步需要你先设置好PowerQuery 然后和第一个一样的步骤 [插入]→[数据透视表] 只是在弹窗选择了第2个选项'使用外部数据源' 选择你的连接...,点击确定就好了 ↓↓↓下面是动图 四 模型插入 这一步的前提是需要你提前在Excel里面建模 (如果都会建模了应该早就会插入透视表了吧(╯‵□′)╯︵┻━┻) 然后和第一个一样的步骤 [插入]→...[数据透视表] 只是在弹窗选择了第3个选项'使用此工作簿的数据模型' 点击确定就好 ↓↓↓下面是动图 以上

    1.9K20

    Python数据透视表与透视分析:深入探索数据关系

    数据透视表是一种用于进行数据分析和探索数据关系的强大工具。它能够将大量的数据按照不同的维度进行聚合,并展示出数据之间的关系,帮助我们更好地理解数据背后的模式和趋势。...在Python中,有多个库可以用来创建和操作数据透视表,其中最常用的是pandas库。 下面我将介绍如何使用Python中的pandas库来实现数据透视表和透视分析。...df = pd.read_csv('data.csv') # 根据实际情况修改文件路径和格式 3、创建数据透视表:使用pandas的pivot_table()函数可以轻松创建数据透视表。...:通过创建数据透视表,我们可以深入探索不同维度之间的数据关系,并对数据进行分析。...下面是一些常用的操作: 筛选数据:可以基于数据透视表中的特定值或条件筛选出我们感兴趣的数据。

    24210

    数据透视表双击出的明细表很难用?

    最近有朋友在使用数据透视表双击出明细的时候遇到2个问题: 1、生成的明细表自动带了筛选,怎么取消筛选?...首先,数据透视表双击出明细生成的就是一个标准化的“表格”(现网上也称为“超级表”),对于超级表的操作,如果你熟悉它,会觉得它非常好用, 如果不熟悉,你可能会觉得它没有Excel原来的普通表方便。...如下图所示: 二、关于复制其他数据到该表 一般情况下,如果你是直接复制数据然后粘贴到紧接着该表的右侧(不隔空列)或下方(不隔空行),超级表的范围会自动扩展,筛选按钮也可正常使用。...因此,也借回答这2个数据透视表的问题简单说一下。...如果你粘贴数据不被自动纳入超级表范围,实际上你可以对超级表的范围进行手动扩展以包含你复粘贴的数据,拖动扩展按钮(超级表的右下角)即可,如下图所示: 如果你还不习惯操作超级表,也不想学,那也可以将超级表转换为普通表

    2.4K30

    技术|数据透视表,Python也可以

    对于习惯于用Excel进行数据分析的我们来说,数据透视表的使用绝对是排名仅次于公式使用的第二大利器。特别是在数据预处理的时候,来一波透视简直是初级得不能再初级的操作了。...如果换用一个软件,很显然,这样的思路也不会发生任何改变。 接下来就给大家讲一下如何在Python中实现数据透视表的功能。 ? pivot ?...在使用这个功能之前,需要先import pandas as pd哦~ pivot这个单词本身就已经告诉我们这个函数实现的功能类似于数据透视表(数据透视:data pivot) 需要指定的参数也和Excel...我们先回顾一下使用Excel进行数据透视表的操作过程: 首先,选中希望进行数据透视的数据,点击数据透视表,指定数据透视表的位置。 ? ?...敲黑板,重点来了: index=列 colums=行 values=值 有了这三个函数,最最最基础的一个数据透视表就算是完成了。

    2.1K20
    领券