首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

手把手带你开启机器学习之路——房价预测(二)

在前面的文章中我们对一个类别变量ocean_proximity进行了OneHotEncoder编码处理,同样可以定义流水线。并且可以将类别变量和数值变量定义看作是两条并行的流水线,最后组合起来。...通常这是一种“过拟合”的情况。 使用交叉验证评估模型 sklearn中提供了交叉验证的功能。K-折交叉验证的过程是,将训练集随机分割成K个不同的子集。每个子集称为一折(fold)。...接下来训练K次,每次训练时,选其中一折为验证集,另外的K-1折为训练集。最终输出一个包含K次评估分数的数组。下图表示了5折交叉验证的过程。 ? 我们采用K=10时的代码,进行评估: ?...尝试其他模型:随机森林和SVM 随机森林 ? SVM ? 几个模型的结果总结如下面表格: ? 目前来看随机森林的表现最好:训练集和交叉验证的误差得分都小。...与GridSearchCV相比,它不会尝试所有可能的组合,而是在每次迭代时为每个超参数选择一个随机值,然后对一定数量的随机组合进行评估。运行10次迭代的结果如下: ?

96810

机器学习基础篇_22

算法分类 监督学习 分类:k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络 回归:线性回归、岭回归 无监督学习 聚类:k-means k-近邻算法 定义...然后经过n次(组)的测试,每次都更换不同的验证集,轮流进行,直到每一份都数据都做过验证集为止,即可得到n组模型的结果,再取其平均值作为最终结果。又称为n折交叉验证。...随机森林: 在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别输出的类别的众数而定。...能够评估各个特征在分类问题上的重要性 回归算法 线性回归 通过一个或者多个自变量与因变量之间进行建模的回归分析。...其中可以为一个或多个自变量之间的线性组合(线性回归的一种) 一元线性回归:涉及到的变量只有一个 多元线性回归:涉及到的变量两个或多个 通用公式: ,其中,为矩阵:, 线性关系模型 一个通过属性的线性组合来进行预测的函数

54920
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在机器学习中处理大量数据!

    ='string'] 对于类别变量我们需要进行编码,在pyspark中提供了StringIndexer, OneHotEncoder, VectorAssembler特征编码模式: from pyspark.ml...原来是使用VectorAssembler直接将特征转成了features这一列,pyspark做ML时 需要特征编码好了并做成向量列, 到这里,数据的特征工程就做好了。...cv_model.bestModel.numNodes) print("depth = ", cv_model.bestModel.depth) numNodes = 429 depth = 10 # 使用五折交叉验证进行预测...,需要通过UCI提供的数据预测个人收入是否会大于5万,本节用PySpark对数据进行了读取,特征的编码以及特征的构建,并分别使用了逻辑回归、决策树以及随机森林算法展示数据预测的过程。...spark通过封装成pyspark后使用难度降低了很多,而且pyspark的ML包提供了基本的机器学习模型,可以直接使用,模型的使用方法和sklearn比较相似,因此学习成本较低。

    2.3K30

    一篇文章教你如何用R进行数据挖掘

    对字符变量进行编码 1)标签编码 这一部分的任务是将字符型的标签进行编码,例如在在我们的数据集中,变量Item_Fat_Content有2个级别低脂肪和常规,我们将低脂编码为0和常规型的编码为1 。...四、用机器学习方法进行预测建模 在进行构造数据模型前,我们将删除之前已经被转过的原始变量,可以通过使用dplyr包中的select()实现,如下: ? 在本节中,我将介绍回归、决策树和随机森林等算法。...此外,我们将使用caret包做交叉验证。通过交叉验证技术来构建较复杂的模型时可以使模型不容易出现过度拟合的情况。(关于交叉验证读者可自行查阅)另外,,决策树使用参数CP来衡量训练集的复杂性和准确性。...当然你也可以通过调参数来进一步优化降低这个误差(如使用十折交叉验证的方法) 3、随机森林 随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的...这个包让你在计算随机森林时花费较短的时间。或者,你也可以尝试使用rf方法作为标准随机森林的功能。从以上结果中我们选择RMSE最小的即选择mtry = 15,我们尝试用1000棵树做计算,如下: ?

    4.1K50

    R语言︱机器学习模型评估方案(以随机森林算法为例)

    做验证的时候,肯定超不过5个数据集。 2、K层交叉验证 一共有23种树数量(j),每种树数量各自分为5折(K,i),每折有30个测试个案的预测值,一共生成3450个数据集。...这样我们就可以根据pred记录的结果进行方差分析等等,进一步研究树数对随机森林准确性及稳定行的影响。...,因为它的单位也和原变量不一样了,综合各个指标的优缺点,我们使用三个指标对模型进行评估。...说明方差齐; `aov`函数对mae指标进行方差分析, summary显示差异不显著,说明不同树数的随机森林的mae指标差异不显著(p远远大于0.05),即没有必要做多重正态检验了,但为了展示整个分析流程...本次绘图主要按照三大指标在随机森林树的数量(j)下的差异,所以会暂时把折数i剔除。

    4.7K20

    一文讲解特征工程 | 经典外文PPT及中文解析

    ) 通过训练集中的计数对分类变量进行排名 对线性和非线性算法均有用 对异常值不敏感 不会对不同的变量使用相同的编码 两全其美 一个简单的例子 目标编码 按目标变量的比例对分类变量进行编码(二分类或回归)...(原始的target encoding直接对全部的训练集数据和标签进行编码,会导致得到的编码结果太过依赖与训练集) 堆叠形式:输出平均的目标的单变量模型 以交叉验证的方式进行(一般会进行交叉验证,比如划分为...10折,每次对9折进行标签编码然后用得到的标签编码模型预测第10折的特征得到结果,其实就是常说的均值编码) 添加平滑以避免将变量编码设置为0。...仅当nan值在训练集测试集中的NaN值是由相同的值引起的,或者当局部验证证明它可以保留信息时才使用(这里涉及到缺失值的缺失原因,比如客户处于某种不好的目的而故意不提供的情况下表示客户的某种不良的潜在行为则可以统一使用...线性算法的非线性编码 硬编码非线性以改善线性算法(hash、各类embedding等) 多项式编码 Leafcoding(随机森林嵌入)(acebook的gbdt+lr这种思路) 遗传算法(典型代表gplearn

    78320

    一文讲解特征工程 | 经典外文PPT及中文解析

    LabelCount编码(就是对count编码进行排名) 通过训练集中的计数对分类变量进行排名 对线性和非线性算法均有用 对异常值不敏感 不会对不同的变量使用相同的编码 两全其美 ?...(原始的target encoding直接对全部的训练集数据和标签进行编码,会导致得到的编码结果太过依赖与训练集) 堆叠形式:输出平均的目标的单变量模型 以交叉验证的方式进行(一般会进行交叉验证,比如划分为...10折,每次对9折进行标签编码然后用得到的标签编码模型预测第10折的特征得到结果,其实就是常说的均值编码) 添加平滑以避免将变量编码设置为0。...仅当nan值在训练集测试集中的NaN值是由相同的值引起的,或者当局部验证证明它可以保留信息时才使用(这里涉及到缺失值的缺失原因,比如客户处于某种不好的目的而故意不提供的情况下表示客户的某种不良的潜在行为则可以统一使用...空间编码 空间变量是对空间中的位置进行编码的变量 示例包括:GPS坐标,城市,国家/地区,地址 ? 克里格(这是啥。。。) K-均值聚类 原始纬度 将城市转换为经度 在街道名称中添加邮政编码 ?

    97120

    一文讲解特征工程 | 经典外文PPT及中文解析

    ) 通过训练集中的计数对分类变量进行排名 对线性和非线性算法均有用 对异常值不敏感 不会对不同的变量使用相同的编码 两全其美 一个简单的例子 目标编码 按目标变量的比例对分类变量进行编码(二分类或回归)...(原始的target encoding直接对全部的训练集数据和标签进行编码,会导致得到的编码结果太过依赖与训练集) 堆叠形式:输出平均的目标的单变量模型 以交叉验证的方式进行(一般会进行交叉验证,比如划分为...10折,每次对9折进行标签编码然后用得到的标签编码模型预测第10折的特征得到结果,其实就是常说的均值编码) 添加平滑以避免将变量编码设置为0。...仅当nan值在训练集测试集中的NaN值是由相同的值引起的,或者当局部验证证明它可以保留信息时才使用(这里涉及到缺失值的缺失原因,比如客户处于某种不好的目的而故意不提供的情况下表示客户的某种不良的潜在行为则可以统一使用...线性算法的非线性编码 硬编码非线性以改善线性算法(hash、各类embedding等) 多项式编码 Leafcoding(随机森林嵌入)(acebook的gbdt+lr这种思路) 遗传算法(典型代表gplearn

    1.1K10

    R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析|附代码数据

    RandomForest step() bestglm() 两个逻辑回归的实例 使用5折交叉验证对模型实例进行评估 变量选择改进 随机森林模型 用RandomForest和Logisitc回归进行预测...使用可视化进行最终的模型探索 结论和下一步改进 1.简介 我们阅读了关于FHS的资料: 心脏研究是对社区自由生活的人群中心血管疾病病因的长期前瞻性研究。...有各种方法来衡量性能,但我在这里选择了5折交叉验证法。 为了进行交叉验证和评估模型实例,我们需要一个成本函数。boot软件包推荐的一个函数,是一个简单的函数,它可以根据一个阈值返回错误分类的平均数。...在对数据集进行探索后,利用逻辑回归和随机森林模型来建立模型。使用K-Fold Cross-Validation对模型进行了评估。...、决策树、随机森林、SVM分类葡萄酒交叉验证ROC MATLAB随机森林优化贝叶斯预测分析汽车燃油经济性 R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数 R语言逻辑回归

    60900

    R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析|附代码数据

    ()bestglm()两个逻辑回归的实例使用5折交叉验证对模型实例进行评估变量选择改进随机森林模型用RandomForest和Logisitc回归进行预测使用可视化进行最终的模型探索结论和下一步改进1....有各种方法来衡量性能,但我在这里选择了5折交叉验证法。为了进行交叉验证和评估模型实例,我们需要一个成本函数。boot软件包推荐的一个函数,是一个简单的函数,它可以根据一个阈值返回错误分类的平均数。...5.结论在这项研究中,为了建立预测模型,使用了包括4240个观测值和16个变量的心脏研究的数据集。这些模型旨在预测十年后的冠心病(CHD)。在对数据集进行探索后,利用逻辑回归和随机森林模型来建立模型。...使用K-Fold Cross-Validation对模型进行了评估。为了扩展这项研究,可以使用进一步的分类方法,如支持向量机(SVM)、梯度提升(GB)、神经网络模型、K-近邻算法,甚至决策树。...点击标题查阅往期内容数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROCMATLAB随机森林优化贝叶斯预测分析汽车燃油经济性R

    76100

    R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析|附代码数据

    RandomForest step() bestglm() 两个逻辑回归的实例 使用5折交叉验证对模型实例进行评估 变量选择改进 随机森林模型 用RandomForest和Logisitc回归进行预测...使用可视化进行最终的模型探索 结论和下一步改进 1.简介 我们阅读了关于FHS的资料: 心脏研究是对社区自由生活的人群中心血管疾病病因的长期前瞻性研究。...有各种方法来衡量性能,但我在这里选择了5折交叉验证法。 为了进行交叉验证和评估模型实例,我们需要一个成本函数。boot软件包推荐的一个函数,是一个简单的函数,它可以根据一个阈值返回错误分类的平均数。...在对数据集进行探索后,利用逻辑回归和随机森林模型来建立模型。使用K-Fold Cross-Validation对模型进行了评估。...点击标题查阅往期内容 数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROC MATLAB随机森林优化贝叶斯预测分析汽车燃油经济性

    62100

    R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析|附代码数据

    ()bestglm()两个逻辑回归的实例使用5折交叉验证对模型实例进行评估变量选择改进随机森林模型用RandomForest和Logisitc回归进行预测使用可视化进行最终的模型探索结论和下一步改进1....有各种方法来衡量性能,但我在这里选择了5折交叉验证法。为了进行交叉验证和评估模型实例,我们需要一个成本函数。boot软件包推荐的一个函数,是一个简单的函数,它可以根据一个阈值返回错误分类的平均数。...5.结论在这项研究中,为了建立预测模型,使用了包括4240个观测值和16个变量的心脏研究的数据集。这些模型旨在预测十年后的冠心病(CHD)。在对数据集进行探索后,利用逻辑回归和随机森林模型来建立模型。...使用K-Fold Cross-Validation对模型进行了评估。为了扩展这项研究,可以使用进一步的分类方法,如支持向量机(SVM)、梯度提升(GB)、神经网络模型、K-近邻算法,甚至决策树。...点击标题查阅往期内容数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROCMATLAB随机森林优化贝叶斯预测分析汽车燃油经济性R

    81610

    21 句话入门机器学习!

    降维就是从数据集中剔除对结果无影响或影响甚微的特征列。 8 标准化是对样本集的每个特征列减去该特征列的平均值进行中心化,再除以标准差进行缩放。...下面使用Scikit-learn的独热码编码器对性别和职业两列做特征编码,生成6个特征列(性别2列,职业4列)。该编码器位于preprocessing子模块中。...随机森林集成了所有的投票分类结果,并将被投票次数最多的类别指定为最终的输出类别。随机森林每颗决策树的训练样本都是随机的,决策树中训练集的特征列也是随机选择确定的。...考虑到随机森林的每一棵决策树中训练集的特征列是随机选择确定的,更适合处理具有多特征列的数据,这里选择 Scikit-learn内置的威斯康星州乳腺癌数据集来演示随机森林分类模型的使用。...结果显示,同样交叉验证10次,96%对91%,随机森林的分类准确率明显高于随机树。

    18620

    R语言randomForest包的随机森林分类模型以及对重要变量的选择

    R包randomForest的随机森林分类模型以及对重要变量的选择 随机森林(random forest)是一种组成式的有监督学习方法,可视为决策树的扩展。...随机森林通过对对象和变量进行抽样构建预测模型,即生成多个决策树,并依次对对象进行分类。最后将各决策树的分类结果汇总,所有预测类别中的众数类别即为随机森林所预测的该对象的类别,分类准确率提升。...注:randomForest包根据经典决策树生成随机森林;如果期望根据条件推断树生成随机森林,可使用party包。当预测变量间高度相关时,基于条件推断树的随机森林可能效果更好。...可根据计算得到的各OUTs重要性的值(如“Mean Decrease Accuracy”),将OTUs由高往低排序后,通过执行重复5次的十折交叉验证,根据交叉验证曲线对OTU进行取舍。...交叉验证法的作用就是尝试利用不同的训练集/验证集划分来对模型做多组不同的训练/验证,来应对单独测试结果过于片面以及训练数据不足的问题。此处使用训练集本身进行交叉验证。

    29.2K41

    「R」逻辑回归、决策树、随机森林

    上述算法构建的树过大,容易出现过度拟合现象。可采用10折交叉验证法预测误差最小的树,然后用它进行预测。 R中的rpart包支持rpart()函数构造决策树,prune()函数对决策树进行剪枝。...随机森林的算法涉及对样本单元和变量的抽样,从而生成大量决策树。对每个样本单元来说,所有的决策树依次对其进行分类。所有决策树预测类别中的众数类别即为随机森林所预测的这一样本的类别。...生成树时没有用到的样本点所对应的类别可以由生成的树估计,与其真实类别比较即可得到袋外预测(out-of-bag, OOB)误差。无法获得验证集时,这是随机森林的一大优势。...随机森林算法可以计算变量的相对重要程度。 randomForest包中的randomForest()函数可以用于生成随机森林。...randomForest包根据传统决策树生成随机森林,而party包中的cforest()函数可以基于条件推断树生成随机森林。当预测变量间高度相关时,基于条件推断树的随机森林可能效果更好。

    1.7K30

    R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析|附代码数据

    回归和RandomForest step() bestglm() 两个逻辑回归的实例 使用5折交叉验证对模型实例进行评估 变量选择改进 随机森林模型 用RandomForest和Logisitc回归进行预测...使用可视化进行最终的模型探索 结论和下一步改进 1.简介 我们阅读了关于FHS的资料: 心脏研究是对社区自由生活的人群中心血管疾病病因的长期前瞻性研究。...有各种方法来衡量性能,但我在这里选择了5折交叉验证法。 为了进行交叉验证和评估模型实例,我们需要一个成本函数。boot软件包推荐的一个函数,是一个简单的函数,它可以根据一个阈值返回错误分类的平均数。...CV和out-of-bag(OOB)来评估随机森林性能。...在对数据集进行探索后,利用逻辑回归和随机森林模型来建立模型。使用K-Fold Cross-Validation对模型进行了评估。

    74400

    21 句话入门机器学习!

    降维就是从数据集中剔除对结果无影响或影响甚微的特征列。 8 标准化是对样本集的每个特征列减去该特征列的平均值进行中心化,再除以标准差进行缩放。...下面使用Scikit-learn的独热码编码器对性别和职业两列做特征编码,生成6个特征列(性别2列,职业4列)。该编码器位于preprocessing子模块中。...随机森林集成了所有的投票分类结果,并将被投票次数最多的类别指定为最终的输出类别。随机森林每颗决策树的训练样本都是随机的,决策树中训练集的特征列也是随机选择确定的。...考虑到随机森林的每一棵决策树中训练集的特征列是随机选择确定的,更适合处理具有多特征列的数据,这里选择 Scikit-learn内置的威斯康星州乳腺癌数据集来演示随机森林分类模型的使用。...结果显示,同样交叉验证10次,96%对91%,随机森林的分类准确率明显高于随机树。

    27720

    Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择|附代码数据

    步骤建立PLS回归模型PLS的K-折交叉验证PLS的蒙特卡洛交叉验证(MCCV)。PLS的双重交叉验证(DCV)使用蒙特卡洛抽样方法进行离群点检测使用CARS方法进行变量选择。...使用移动窗口PLS(MWPLS)进行变量选择。使用蒙特卡洛无信息变量消除法(MCUVE)进行变量选择进行变量选择建立PLS回归模型这个例子说明了如何使用基准近红外数据建立PLS模型。...PLS的K折交叉验证说明如何对PLS模型进行K折交叉验证clear;A=6;                          % LV的数量K=5;                          ...Ypred:预测值Ytrue:真实值RMSECV:交叉验证的均方根误差,越小越好。Q2:与R2含义相同,但由交叉验证计算得出。PLS的双重交叉验证(DCV)说明如何对PLS建模进行DCV。...PYTHON用时变马尔可夫区制转换(MRS)自回归模型分析经济时间序列R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析基于R语言实现LASSO回归分析Python

    1.2K00

    R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析|附代码数据

    RandomForest step() bestglm() 两个逻辑回归的实例 使用5折交叉验证对模型实例进行评估 变量选择改进 随机森林模型 用RandomForest和Logisitc回归进行预测...使用可视化进行最终的模型探索 结论和下一步改进 1.简介 我们阅读了关于FHS的资料: 心脏研究是对社区自由生活的人群中心血管疾病病因的长期前瞻性研究。...有各种方法来衡量性能,但我在这里选择了5折交叉验证法。 为了进行交叉验证和评估模型实例,我们需要一个成本函数。boot软件包推荐的一个函数,是一个简单的函数,它可以根据一个阈值返回错误分类的平均数。...CV和out-of-bag(OOB)来评估随机森林性能。...在对数据集进行探索后,利用逻辑回归和随机森林模型来建立模型。使用K-Fold Cross-Validation对模型进行了评估。

    56700

    Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择|附代码数据

    步骤建立PLS回归模型PLS的K-折交叉验证PLS的蒙特卡洛交叉验证(MCCV)。PLS的双重交叉验证(DCV)使用蒙特卡洛抽样方法进行离群点检测使用CARS方法进行变量选择。...PLS的K折交叉验证说明如何对PLS模型进行K折交叉验证clear;A=6;                          % LV的数量K=5;                          ...----蒙特卡洛交叉验证(MCCV)的PLS说明如何对PLS建模进行MCCV。与K-fold CV一样,MCCV是另一种交叉验证的方法。...Ypred:预测值Ytrue:真实值RMSECV:交叉验证的均方根误差,越小越好。Q2:与R2含义相同,但由交叉验证计算得出。PLS的双重交叉验证(DCV)说明如何对PLS建模进行DCV。...PYTHON用时变马尔可夫区制转换(MRS)自回归模型分析经济时间序列R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析基于R语言实现LASSO回归分析Python

    42900
    领券