Sklearn (全称 Scikit-Learn) 是基于 Python 语言的机器学习工具,是机器学习中的常用第三方模块。...因此,在安装sklearn之前,需要先安装其三个依赖库numpy+scipy+matplotlib,具体安装步骤如下: 1.进入官网下载相应的模块 安装地址如下https://www.lfd.uci.edu...依次对应找到相应的库,进行下载 2.将下载的文件放入到python同路径文件夹中 随后在conda环境中进行安装 利用cmd命令打开命令框 首先将下载好的文件放入到对应python文件夹中,查找可以使用
使用sklearn.preprocessing.scale()函数,可以直接将给定数据进行标准化。...sklearn.preprocessing.StandardScaler类,使用该类的好处在于可以保存训练集中的参数(均值、方差)直接使用其对象转换测试集数据。...规模化有异常值的数据 如果你的数据有许多异常值,那么使用数据的均值与方差去做标准化就不行了。 在这里,你可以使用robust_scale 和 RobustScaler这两个方法。...可以使用实用类Binarizer。...要想使得类别型的变量能最终被模型直接使用,可以使用one-of-k编码或者one-hot编码。这些都可以通过OneHotEncoder实现,它可以将有n种值的一个特征变成n个二元的特征。
首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也十分强大! 本文中使用sklearn中的IRIS(鸢尾花)数据集来对特征处理功能进行说明。...我们使用sklearn中的preproccessing库来进行数据预处理,可以覆盖以上问题的解决方案。 2.1 无量纲化 无量纲化使不同规格的数据转换到同一规格。...使用preproccessing库的StandardScaler类对数据进行标准化的代码如下: 1 from sklearn.preprocessing import StandardScaler2 3...使用preproccessing库的MinMaxScaler类对数据进行区间缩放的代码如下: from sklearn.preprocessing import MinMaxScaler #区间缩放,...我们使用sklearn中的feature_selection库来进行特征选择。
首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也十分强大! 本文中使用sklearn中的IRIS(鸢尾花)数据集来对特征处理功能进行说明。...我们使用sklearn中的preproccessing库来进行数据预处理,可以覆盖以上问题的解决方案。 2.1 无量纲化 无量纲化使不同规格的数据转换到同一规格。...使用preproccessing库的OneHotEncoder类对数据进行哑编码的代码如下: from sklearn.preprocessing import OneHotEncoder #哑编码...我们使用sklearn中的feature_selection库来进行特征选择。...使用feature_selection库的RFE类来选择特征的代码如下: 1 from sklearn.feature_selection import RFE 2 from sklearn.linear_model
Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy、Scipy、MatPlotLib之上 ?...如果已经安装NumPy和SciPy,安装scikit-learn可以使用 pip install-U scikit-learn。...3.Sklearn通用学习模式 Sklearn中包含众多机器学习方法,但各种学习方法大致相同,我们在这里介绍Sklearn通用学习模式。...from sklearn import datasets #引入数据集,sklearn包含众多数据集 from sklearn.model_selection import train_test_split...from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors
本文中介绍的是如何在sklearn库中使用PCA方法,以及理解PCA方法中的几个重要参数的含义,通过一个案例来加深理解。 ?...Sklearn库中PCA 解释sklearn库中PCA方法的参数、属性和方法。 ?...参数说明 sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False) n_components int, float, None...类型,str {‘auto’, ‘full’, ‘arpack’, ‘randomized’} 意义:定奇异值分解 SVD 的方法 auto:自动选择 full:传统意义上的SVD arpack:直接使用...使用的数据有4个簇 查看方差分布(不降维) 不降维,只对数据进行投影,保留3个属性 from sklearn.decomposition import PCA pca = PCA(n_components
使用Pandas 数据清洗特征选择 + sklearn 实现 Logistics Regression 分类 (记录一次Data Mining作业) 关于LR基础可以看这里 数据描述与分析 我们有这么一个数据集...参数默认值 class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept...solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=1) 我们在训练时可以直接使用默认参数...参考代码 from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split...from sklearn.metrics import precision_recall_curve, roc_curve, auc from sklearn.metrics import classification_report
首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也十分强大! 本文中使用sklearn中的IRIS(鸢尾花)数据集来对特征处理功能进行说明。...我们使用sklearn中的preproccessing库来进行数据预处理,可以覆盖以上问题的解决方案。 2.1 无量纲化 无量纲化使不同规格的数据转换到同一规格。...我们使用sklearn中的feature_selection库来进行特征选择。...4.3 回顾 库 类 说明 decomposition PCA 主成分分析法 lda LDA 线性判别分析法 5 总结 再让我们回归一下本文开始的特征工程的思维导图,我们可以使用sklearn...接下来,我将在《使用sklearn优雅地进行数据挖掘》中阐述其中的奥妙! 6 参考资料 FAQ: What is dummy coding?
数据准备的过程主要包括3个步骤: 数据选择 数据预处理 数据转换 本文会告诉你两种方法,即如何使用Python的Scikit-Learn库进行简单的数据转换。...接下来用都知道的鸢尾花数据集演示数据归一化: # 对鸢尾花数据集进行数据归一化处理. from sklearn.datasets import load_iris from sklearn import...依然用鸢尾花的例子: # 对鸢尾花数据集进行数据标准化处理. from sklearn.datasets import load_iris from sklearn import preprocessing...中肯的建议是,先建立一个数据缩放后的副本,使用你的算法模型测试对比缩放前后的效果。 这可以让你快速知道,你的模型中缩放带来的好处或弊端。 你也可以试用不同的缩放方法,进行对比。
使用sklearn工具可以方便地进行特征工程和模型训练工作,在使用sklearn做特征工程中,我们最后留下了一些疑问:特征处理类都有三个方法fit、transform和fit_transform,fit...显然,这不是巧合,这正是sklearn的设计风格。我们能够更加优雅地使用sklearn进行特征工程和模型训练工作。此时,不妨从一个基本的数据挖掘场景入手: ? ...我们使用sklearn进行虚线框内的工作(sklearn也可以进行文本特征提取)。...1.3 关键技术 并行处理,流水线处理,自动化调参,持久化是使用sklearn优雅地进行数据挖掘的核心。...但是纯粹使用sql语句来进行特征处理是很勉强的,除去特征提取以外,我又造了一回轮子,原来sklearn提供了这么优秀的特征处理、工作组合等功能。
sklearn提供了sklearn.ensemble库,支持众多集成学习算法和模型。...恐怕大多数人使用这些工具时,要么使用默认参数,要么根据模型在测试集上的性能试探性地进行调参(当然,完全不懂的参数还是不动算了),要么将调参的工作丢给调参算法(网格搜索等)。...这样并不能真正地称为“会”用sklearn进行集成学习。 我认为,学会调参是进行集成学习工作的前提。...所以,如果该损失函数可用在多类别的分类问题上,故其是sklearn中Gradient Tree Boosting分类模型默认的损失函数。 ...如果步子迈大了,使用最速下降法时,容易迈过最优点。将缩减代入迭代公式: ? 缩减需要配合基模型数一起使用,当缩减率v降低时,基模型数要配合增大,这样才能提高模型的准确度。
python_sklearn库的使用 读取数据并按比例分为训练集和测试集 import pandas as pd import sklearn.model_selection import...使用机器学习算法训练 1.监督学习 sklearn.neighbors #近邻算法 sklearn.svm #支持向量机 sklearn.kernel_ridge #核-岭回归...sklearn.discriminant_analysis #判别分析 sklearn.linear_model #广义线性模型 sklearn.ensemble #集成学习 sklearn.tree...LogisticRegression() #新建一个逻辑回归器 logr.fit(x_train, y_train.values.ravel()) #对训练集进行拟合 y_pred = logr.predict(x_test) #使用训练好的逻辑回归器对测试集进行预测...计算模型的评价指标 使用sklearn.metrics可以计算模型的各种评价指标,例如:准确率、召回率、精确度、F1分数、ROC曲线、AUC等指标。
使用sklearn工具可以方便地进行特征工程和模型训练工作,在《使用sklearn做单机特征工程》中,我们最后留下了一些疑问:特征处理类都有三个方法fit、transform和fit_transform...显然,这不是巧合,这正是sklearn的设计风格。我们能够更加优雅地使用sklearn进行特征工程和模型训练工作。此时,不妨从一个基本的数据挖掘场景入手: ?...我们使用sklearn进行虚线框内的工作(sklearn也可以进行文本特征提取)。...sklearn提供了包pipeline来完成流水线式和并行式的工作。 1.2、数据初貌 不在此,我们仍然使用IRIS数据集来进行说明。为了适应提出的场景,对原数据集需要稍微加工: ?...1.3、关键技术 并行处理,流水线处理,自动化调参,持久化是使用sklearn优雅地进行数据挖掘的核心。
使用sklearn工具可以方便地进行特征工程和模型训练工作,在《使用sklearn做单机特征工程》中,我们最后留下了一些疑问:特征处理类都有三个方法fit、transform和fit_transform...显然,这不是巧合,这正是sklearn的设计风格。我们能够更加优雅地使用sklearn进行特征工程和模型训练工作。此时,不妨从一个基本的数据挖掘场景入手: ?...我们使用sklearn进行虚线框内的工作(sklearn也可以进行文本特征提取)。...1.3 关键技术 并行处理,流水线处理,自动化调参,持久化是使用sklearn优雅地进行数据挖掘的核心。...但是纯粹使用sql语句来进行特征处理是很勉强的,除去特征提取以外,我又造了一回轮子,原来sklearn提供了这么优秀的特征处理、工作组合等功能。
from sklearn.decomposition import PCA PCA 主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理...sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False) 参数: n_components: 意义:PCA算法中所要保留的主成分个数...实例: import numpy as np from sklearn.decomposition import PCA X = np.array([[-1, -1], [-2, -1], [-3, -
= most_frequent_class] error = sum(incorrect_predictions) # 最后返回使用给定特征值得到的待预测个体的类别和错误率。...return most_frequent_class, error 对于某项特征,遍历其每一个特征值,使用上述函数,就能得到预测结果和每个特征值所带来的错误率,然后把所有的错误率累加起来,就能得到该特征的总错误率...遍历数据集中的每个特征,使用我们先前定义的函数 train_on_feature()训练预测器,计算错误率。...feature_index) all_predictors[feature_index] = predictors errors[feature_index] = total_error 然后找出错误率最低的特征...= most_frequent_class] error = sum(incorrect_predictions) # 最后返回使用给定特征值得到的待预测个体的类别和错误率。
整合其他人项目时,需要删除不需要的框架和代码,这个功能就很实用了 一 二 三 ps.只勾第一个就好了 四
决策树算法原理与sklearn实现 简单地说,决策树算法相等于一个多级嵌套的选择结构,通过回答一系列问题来不停地选择树上的路径,最终到达一个表示某个结论或类别的叶子节点,例如有无贷款意向、能够承担的理财风险等级...决策树属于有监督学习算法,需要根据已知样本来训练并得到一个可以工作的模型,然后再使用该模型对未知样本进行分类。...扩展库sklearn.tree中使用CART算法的优化版本实现了分类决策树DecisionTreeClassifier和回归决策树DecisionTreeRegressor,官方在线帮助文档为https...表 DecisionTreeClassifier类构造方法参数及含义 参数名称 含义 criterion 用来执行衡量分裂(创建子节点)质量的函数,取值为'gini'时使用基尼值,为'entropy'..., X, check_input=True) 返回样本集X的类别或回归值 score(self, X, y, sample_weight=None) 根据给定的数据和标签计算模型精度的平均值 另外,sklearn.tree
使用 sklearn 做特征工程 特征工程是什么? 本文中使用 sklearn 中的 IRIS(鸢尾花)数据集[1]来对特征处理功能进行说明。...#特征矩阵 iris.data #目标向量 iris.target 数据预处理 我们使用 sklearn 中的 preproccessing 库来进行数据预处理,可以覆盖以上问题的解决方案...使用 preproccessing 库的 OneHotEncoder 类对数据进行哑编码的代码如下: from sklearn.preprocessing import OneHotEncoder...| 特征选择 我们使用 sklearn 中的 feature_selection 库来进行特征选择。...使用 feature_selection 库的 RFE 类来选择特征的代码如下: from sklearn.feature_selection import RFE from sklearn.linear_model
函数scale提供了一个快速简单的方法来在单个array-like数据集上执行上述标准化操作 from sklearn import preprocessing import numpy as np #
领取专属 10元无门槛券
手把手带您无忧上云