首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一个忠诚的客户是怎么骂着你流失的?

    一 分享我的一段经历 最近一年,我先后发誓不再和两个公司打交道,而且利用很多机会向身边的伙伴们宣扬了他们的不佳体验。我相信我确实也影响了不少人的决策。 第一个是曲美家具。 前年家里装修,家具是曲美定制。我7月份下的单子,8月15日曲美才到货安装,且安装前要求我们付清全款。结果安装时发现不少柜子尺寸不符合,要重新订做后再从北京发货。这一拖,就拖到了9月底。刚开始,我也确实心平气和去协调,但每次打杭州新时代家居广场该曲美定制店里的电话,他们都再三推诿,无法给出准确的安装日期。后来又说大批量的安装已经从我小区撤走

    04

    是时候重视非结构化数据分析了 走出两大经典误区!

    非结构化数据分析既不等同于舆情分析,也不等同于情感分析,它是一个数据驱动的将语义分析、人机互动、舆情分析三者结合的不断循环改进的良性过程。 虽然基本上国内大部分公司,言必提“大数据”,但是对于大部分CIO、CTO们来说,对数据的分析仍然停留在过去的阶段:对于非结构化数据分析的成熟度还远远落后于结构化数据。 但是现在移动端所带来的爆发式增长给大数据从业者带来了非常大的挑战,这些数据有很多是非结构化数据,充斥了人们交流的空间,相应的,对非结构化数据的分析也变得越来越重要——对非结构化数据进行分析、提取出有价值的

    09

    美国数据科学家:重视非结构化数据分析 走出两大“经典”误区

    非结构化数据分析既不等同于舆情分析,也不等同于情感分析,它是一个数据驱动的将语义分析、人机互动、舆情分析三者结合的不断循环改进的良性过程。 虽然基本上国内大部分公司,言必提“大数据”,但是对于大部分CIO、CTO们来说,对数据的分析仍然停留在过去的阶段:对于非结构化数据分析的成熟度还远远落后于结构化数据。 但是现在移动端所带来的爆发式增长给大数据从业者带来了非常大的挑战,这些数据有很多是非结构化数据,充斥了人们交流的空间,相应的,对非结构化数据的分析也变得越来越重要——对非结构化数据进行分析、提取

    05

    专访“舆情”从业技术人:抓住中台契机,推动了一场技术变革

    作者 | 罗燕珊 采访嘉宾 | 冯伟 入行 8 年,冯伟一路见证着舆情行业的兴起和变化。目前,他仍在该领域里深耕,并担任北京人民在线网络有限公司的技术总监一职。 如今,舆情产业的未来由大数据和 AI 技术主导着,但“内容”仍然起着不可替代的作用。在日新月异的技术浪潮中,它将何去何从?接下来让我们一同随着冯伟,去了解这个常被外界“误解”的舆情产业。 舆情业的演变升级 即便进入 21 世纪,早期大众对舆情的理解仍比较片面,认为“舆情即负面”。事实上舆情的概念早已发生变化,它不再局限于民众的社会政治态度,舆情客体

    03

    微信正式上线“微信指数”,基于微信大数据分析的移动端指数

    昨日,微信正式上线“微信指数”,这是微信官方提供的基于微信大数据分析的移动端指数。在移动互联网时代,社交数据越来越重要。热点,往往不仅只有一个人群在关注。作为一款月活跃用户达8.89亿的应用,微信已经成为人们日常生活中必不可少的工具。“喜欢财经还是八卦”“讨论买房还是卖房”“爱好男还是爱好女”,“这段时间萨德如何了”,每个人都有自己不同的偏好和习惯。你可能经常看到某个事件在“刷屏”,但没法精确了解它在一段时间内的热度变化。虽然目前出现了一些基于移动互联网领域的指数,但还没有来自微信的社交数据,难以形成立

    012

    如何设置语雀收藏更新推送、语雀收藏更新提醒?

    「语雀」作为一个「知识创作工具」,孵化自 蚂蚁金服 ,是「体验科技」理念下的一款创新产品,已是 5万+ 阿里员工进行文档编写、知识沉淀的标配。现在已经有很多企业正在使用,帮助企业沉淀、整理内部信息和知识。员工在遇到一些实际问题的时候,比如如何连接公司打印机,或者咨询公司报销的途径和范围,就可以直接前往语雀查询具体解决方法。 但实际在工作中,有一些知识库的内容会进行“默默”更改,但员工仅凭自己记忆的话,就会出现“咦,这个流程怎么改了?”、“这里什么时候更新了?”的情况。 这个问题对于一些日常工作可能影响还好,但对于有一些比如客服、销售、社群运营这类有比较严格SOP操作要求的岗位来说,如果解答错误或者服务标准不规范,甚至会导致品牌舆情危机。

    02

    [自然语言处理|NLP]社交媒体分析中的应用:从原理到实践

    社交媒体已经成为信息传播、互动交流的重要平台,用户在这个平台上产生了庞大的文本数据,包括评论、帖子、转发等。这些数据不仅是用户个体的表达,同时也承载着社会的声音、情感和趋势。随着自然语言处理(NLP)技术的不断发展,我们能够更深入地挖掘这些社交媒体数据,从中获取有价值的信息。本文将深入研究NLP在社交媒体分析中的关键技术和应用,着重探讨情感分析、话题挖掘和用户行为预测等方面。通过详细的示例和实践代码,我们将揭示NLP如何在社交媒体数据中发挥关键作用,为企业、研究者和决策者提供更深层次的洞察。

    02

    微信指数是怎么调取数据来源的

    微信正式上线“微信指数”,但微信指数数据从哪里来?目前官方是这么个说法:1、捕捉热词,看懂趋势;2、监测舆情动向,形成研究结果;3、洞察用户兴趣,助力精准营销。之前张晓龙说过好几次,少就多,所以,微信指数能否作为一个搜索引擎的逻辑概念,从哪里调取数据来源?微信公众号的文章?还是微信嵌入进来的各种第三方网站的内容来源?或者是其他?微信派给出了一个提示:基于微信的大数据分析,微信指数能够帮助大家看到关键词在微信内的热度情况,热度情况有且只限于微信搜索、公众号文章以及朋友圈公开转发文章形成的综合分析。   我们

    05
    领券