首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

以预先训练的方式使用机器学习模型Keras,Tensorflow

当然!以下是使用预训练的机器学习模型(如ResNet50)在Keras和TensorFlow中进行迁移学习的示例。迁移学习允许您利用在大规模数据集(如ImageNet)上预训练的模型,并将其应用于特定任务,从而加快训练过程并提高模型性能。

环境准备

首先,确保您已经安装了必要的库:

代码语言:javascript
复制
pip install tensorflow

示例:使用预训练的ResNet50进行图像分类

以下示例演示如何使用预训练的ResNet50模型对CIFAR-10数据集进行分类。

代码语言:javascript
复制
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Input
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# 加载CIFAR-10数据集
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

# 数据预处理
x_train = tf.image.resize(x_train, [224, 224]) / 255.0
x_test = tf.image.resize(x_test, [224, 224]) / 255.0
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

# 加载预训练的ResNet50模型,不包括顶部的全连接层
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))

# 冻结预训练模型的权重(可选)
# base_model.trainable = False

# 添加自定义的全连接层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

# 构建最终模型
model = Model(inputs=base_model.input, outputs=predictions)

# 编译模型
model.compile(optimizer=Adam(lr=0.0001),
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# 数据增强(可选)
datagen = ImageDataGenerator(
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True)

datagen.fit(x_train)

# 训练模型
history = model.fit(datagen.flow(x_train, y_train, batch_size=32),
                    epochs=10,
                    validation_data=(x_test, y_test))

# 评估模型
loss, accuracy = model.evaluate(x_test, y_test)
print(f'测试集准确率: {accuracy*100:.2f}%')

关键步骤解释

  1. 加载预训练模型
    • 使用ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))加载在ImageNet上预训练的ResNet50模型,并排除顶部的全连接层。
  2. 冻结预训练模型的权重(可选):
    • base_model.trainable = False可以冻结预训练模型的权重,防止在微调过程中被更新。这对于迁移学习初期通常是有益的。
  3. 添加自定义层
    • 在预训练模型的输出上添加全局平均池化层和全连接层,以适应新的分类任务。
  4. 编译模型
    • 使用适当的优化器(如Adam)、损失函数(如分类交叉熵)和评估指标(如准确率)编译模型。
  5. 数据增强(可选):
    • 使用ImageDataGenerator进行数据增强,以提高模型的泛化能力。
  6. 训练和评估
    • 使用训练数据进行模型训练,并在测试数据上评估模型性能。

微调预训练模型

如果您希望进一步优化模型,可以在初步训练后解冻部分预训练模型的层,并继续训练。例如:

代码语言:javascript
复制
# 解冻最后几层
for layer in base_model.layers[-10:]:
    layer.trainable = True

# 重新编译模型,可能需要调整学习率
model.compile(optimizer=Adam(lr=1e-5),
              loss='categorical_crossentropy',
              metrics=['accuracy'])

# 继续训练
history_finetune = model.fit(datagen.flow(x_train, y_train, batch_size=32),
                             epochs=10,
                             validation_data=(x_test, y_test))

使用TensorFlow Hub中的预训练模型

除了Keras自带的预训练模型,您还可以使用TensorFlow Hub中的模型。例如:

代码语言:javascript
复制
import tensorflow_hub as hub

# 加载预训练的MobileNet V2模型
mobilenet_model = tf.keras.Sequential([
    hub.KerasLayer("https://tfhub.dev/tensorflow/mobilenet_v2_100_224/classification/4", trainable=False),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 编译和训练模型(类似于前面的步骤)

总结

使用预训练的机器学习模型可以显著提升模型的性能,尤其是在数据量有限的情况下。通过迁移学习,您可以利用在大规模数据集上训练好的特征提取器,并根据具体任务进行微调,从而实现高效的模型训练和部署。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

使用预先训练的扩散模型进行图像合成

预先训练的扩散模型允许任何人创建令人惊叹的图像,而不需要大量的计算能力或长时间的训练过程。 尽管文本引导图像生成提供了一定程度的控制,但获得具有预定构图的图像通常很棘手,即使有大量提示也是如此。...这种方法的主要优点是它可以与开箱即用的预训练扩散模型一起使用,而不需要昂贵的重新训练或微调。...许多图像扩散模型(包括稳定扩散)不在原始图像空间中运行,而是在较小的学习潜在空间中运行。通过这种方式,可以以最小的质量损失减少所需的计算资源。潜在空间通常是通过变分自动编码器学习的。...使用多重扩散进行图像合成 现在让我们来解释如何使用 MultiDiffusion 方法获得可控的图像合成。目标是通过预先训练的文本到图像扩散模型更好地控制图像中生成的元素。...此方法增强了对生成图像元素的位置的控制,并且还可以无缝组合以不同风格描绘的元素。 所述过程的主要优点之一是它可以与预先训练的文本到图像扩散模型一起使用,而不需要微调,这通常是一个昂贵的过程。

44030

《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第12章 使用TensorFlow自定义模型并训练

第10章 使用Keras搭建人工神经网络 第11章 训练深度神经网络 第12章 使用TensorFlow自定义模型并训练 [第13章 使用TensorFlow加载和预处理数据] [第14章 使用卷积神经网络实现深度计算机视觉...这一章就会讨论这些问题,还会学习如何使用TensorFlow的自动图生成特征提升自定义模型和训练算法。首先,先来快速学习下TensorFlow。...TensorFlow速览 TensorFlow是一个强大的数值计算库,特别适合做和微调大规模机器学习(但也可以用来做其它的重型计算)。...无数的项目是用TensorFlow来做各种机器学习任务,包括图片分类、自然语言处理、推荐系统和时间序列预测。...使用这种方式,在训练模型时,Keras能展示每个周期的平均损失(损失是主损失加上0,05乘以重建损失),和平均重建误差。

5.3K30
  • 【TensorFlow】使用迁移学习训练自己的模型

    最近在研究tensorflow的迁移学习,网上看了不少文章,奈何不是文章写得不清楚就是代码有细节不对无法运行,下面给出使用迁移学习训练自己的图像分类及预测问题全部操作和代码,希望能帮到刚入门的同学。...大家都知道TensorFlow有迁移学习模型,可以将别人训练好的模型用自己的模型上 即不修改bottleneck层之前的参数,只需要训练最后一层全连接层就可以了。...我们就以最经典的猫狗分类来示范,使用的是Google提供的inception v3模型。...如果你的路径都没有问题,按下回车就可以训练你的模型 ?...img 可以看到训练简单的猫猫狗狗还剩很轻松,正确率100% 然后可以在cmd中使用以下命令打开tensorboard来查看你的模型,xxxx是你的路径 tensorboard--logdir=C:/xxxx

    2.1K30

    使用Java部署训练好的Keras深度学习模型

    Keras库为深度学习提供了一个相对简单的接口,使神经网络可以被大众使用。然而,我们面临的挑战之一是将Keras的探索模型转化为产品模型。...像ONNX这样的项目正朝着深度学习的标准化方向发展,但支持这些格式的运行时仍然有限。常用的方法是将Keras模型转换为TensorFlow图,然后在其他支持TensorFlow的运行时中使用这些图。...我一直在探索深度学习的一个用例是使用Python训练Keras模型,然后使用Java产生模型。...Java安装程序 要使用Java部署Keras模型,我们将使用Deeplearing4j库。它提供了Java深度学习的功能,可以加载和利用Keras训练的模型。...结论 随着深度学习越来越受欢迎,越来越多的语言和环境支持这些模型。随着库开始标准化模型格式,让使用单独的语言进行模型训练和模型部署成为可能。

    5.3K40

    机器学习-使用TensorFlow for Poets训练图像分类器

    为了做到以上功能我们需要使用一个代码实验室叫做TensorFlow for Poets,这是开始学习并且做图片分类相关工作一个的好方法。 ?...我们有了训练数据后我们就可以开始训练分类器了,我们会使用TensorFlow来做这一步。...TensorFlow是一个开源的机器学习库,在深度学习领域尤其强大,深度学习最近几年发展迅猛尤其在图像分类领域: ?...为了解决这个问题我们使用深度学习,因为在图像处理方面它有巨大的优势,就是这个你不用手动提取特征,你可以使用像素图像的特征。...在TensorFlow for Poets里我们以Inception为基础,然后使用一个叫做再次训练的功能来调试使其更好地分辨我们的图像。

    1.2K20

    掌握深度学习,为什么要用PyTorch、TensorFlow框架?

    相比之下,在默认情况下TensorFlow 会创建一个计算图,优化图代码以提高性能,然后训练模型。...TensorFlow.js 是一个利用 JavaScript 开发和训练机器学习模型,并在浏览器或 Node.js 中部署模型的库。...转换器可以将 TensorFlow 模型转换为高效的形式供解释器使用,还可引入优化以缩小可执行文件大小并提高性能。...深度学习与迁移学习 PyTorch 和 TensorFlow 都支持深度学习和迁移学习。迁移学习(有时称为自定义机器学习)可以从预先训练好的神经网络模型开始,只需为你的数据定制最终层即可。...从头开始训练深度神经网络非常耗时,并且需要大量标记数据。迁移学习花费的时间更少,而且需要的新标记样本更少,但只有在模型已预先训练好的情况下,你才可以使用迁移学习。

    1.5K10

    为什么要用 PyTorch、TensorFlow 框架

    相比之下,在默认情况下TensorFlow会创建一个计算图,优化图代码以提高性能,然后训练模型。...TensorFlow.js是一个利用JavaScript开发和训练机器学习模型,并在浏览器或Node.js中部署模型的库。...转换器可以将TensorFlow模型转换为高效的形式供解释器使用,还可引入优化以缩小可执行文件大小并提高性能。 TensorFlow Extended(TFX)是用于部署生产机器学习管道的端到端平台。...深度学习与迁移学习 PyTorch和TensorFlow都支持深度学习和迁移学习。迁移学习(有时称为自定义机器学习)可以从预先训练好的神经网络模型开始,只需为你的数据定制最终层即可。...从头开始训练深度神经网络非常耗时,并且需要大量标记数据。迁移学习花费的时间更少,而且需要的新标记样本更少,但只有在模型已预先训练好的情况下,你才可以使用迁移学习。

    1.1K21

    使用TensorFlow训练图像分类模型的指南

    转载自:51CTO技术栈原文地址:使用TensorFlow训练图像分类模型的指南众所周知,人类在很小的时候就学会了识别和标记自己所看到的事物。...如今,随着机器学习和深度学习算法的不断迭代,计算机已经能够以非常高的精度,对捕获到的图像进行大规模的分类了。...下面,我将和您共同探讨计算机视觉(Computer Vision)的一种应用——图像分类,并逐步展示如何使用TensorFlow,在小型图像数据集上进行模型的训练。...下面让我们用给定的训练数据,来编译和训练神经网络。首先,我们以初始学习率、衰减步骤和衰减率作为参数,使用ExponentialDecay(指数衰减学习率)来定义学习率计划。...同时,我们调用模型对象的评估方法,以获得模型在不可见数据集上的表现分数。最后,您可以使用在模型对象上调用的save方法,保存要在生产环境中部署的模型对象。

    1.2K01

    《Scikit-Learn、Keras与TensorFlow机器学习实用指南(第二版)》第19章 规模化训练和部署TensorFlow模型

    在机器学习中(其它领域也是),很难提前知道哪个想法有效,所以应该尽量多、尽量快尝试。加速训练的方法之一是使用GPU或TPU。要进一步加快,可以在多个机器上训练,每台机器上都有硬件加速。...TensorFlow模型服务化 训练好TensorFlow模型之后,就可以在Python代码中使用了:如果是tf.keras模型,调用predict()模型就成。...安装 TensorFlow Serving 有多种方式安装TF Serving:使用Docker镜像、使用系统的包管理器、从源代码安装,等等。...使用带有GPU的虚拟机 所有主流的云平台都提供GPU虚拟机,一些预先配置了驱动和库(包括TensorFlow)。...用TensorFlow集群训练模型 TensorFlow集群是一组并行运行的TensorFlow进程,通常是在不同机器上,彼此通信完成工作 —— 例如,训练或执行神经网络。

    6.7K20

    使用Keras在训练深度学习模型时监控性能指标

    Keras库提供了一套供深度学习模型训练时的用于监控和汇总的标准性能指标并且开放了接口给开发者使用。 除了为分类和回归问题提供标准的指标以外,Keras还允许用户自定义指标。...这使我们可以在模型训练的过程中实时捕捉模型的性能变化,为训练模型提供了很大的便利。 在本教程中,我会告诉你如何在使用Keras进行深度学习时添加内置指标以及自定义指标并监控这些指标。...完成本教程后,你将掌握以下知识: Keras计算模型指标的工作原理,以及如何在训练模型的过程中监控这些指标。 通过实例掌握Keras为分类问题和回归问题提供的性能评估指标的使用方法。...性能评估指标可以通过输出查看,也可以通过调用模型类的fit()方法获得。这两种方式里,性能评估函数都被当做关键字使用。如果要查看验证数据集的指标,只要在关键字前加上val_前缀即可。...Keras Metrics API文档 Keras Metrics的源代码 Keras Loss API文档 Keras Loss的源代码 总结 在本教程中,你应该已经了解到了如何在训练深度学习模型时使用

    8K100

    keras系列︱深度学习五款常用的已训练模型

    笔者先学的caffe,从使用来看,keras比caffe简单超级多,非常好用,特别是重新训练一个模型,但是呢,在fine-tuning的时候,遇到了很多问题,对新手比较棘手。...VGG16模型,权重由ImageNet训练而来 该模型再Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序 模型的默认输入尺寸时...VGG19模型,权重由ImageNet训练而来 该模型在Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序 模型的默认输入尺寸时...50层残差网络模型,权重训练自ImageNet 该模型在Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序 模型的默认输入尺寸时...InceptionV3网络,权重训练自ImageNet 该模型在Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序 模型的默认输入尺寸时

    8K70

    TensorFlow 2.0入门

    作者 | Himanshu Rawlani 来源 | Medium 编辑 | 代码医生团队 谷歌于2019年3月6日和7日在其年度TensorFlow开发者峰会上发布了最新版本的TensorFlow机器学习框架...这一新版本使用TensorFlow的方式进行了重大改进。TensorFlow拥有最大的开发者社区之一,从机器学习库到完善的机器学习生态系统已经走过了漫长的道路。...通过使用更大,更复杂的架构,可以轻松做得更好。有许多开源预训练网络可用于我们的类似图像分类任务。一个预先训练模型是以前训练的大型数据集,通常在大型图像分类任务保存的网络。...既可以使用预先训练的模型,也可以使用预先训练过的convents进行迁移学习。迁移学习背后的直觉如果这个模型是在一个足够大且通用的数据集上训练的,那么这个模型将有效地作为视觉世界的通用模型。...它还使能够对卷积神经网络模型进行有效的训练。 使用tf.keras不仅从头开始构建CNN,而且还能够重复使用预先训练好的网络,在短时间内在鲜花数据集上获得更高的准确度。

    1.8K30

    keras系列︱深度学习五款常用的已训练模型

    笔者先学的caffe,从使用来看,keras比caffe简单超级多,非常好用,特别是重新训练一个模型,但是呢,在fine-tuning的时候,遇到了很多问题,对新手比较棘手。  ... VGG16模型,权重由ImageNet训练而来  该模型再Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序  模型的默认输入尺寸时... VGG19模型,权重由ImageNet训练而来  该模型在Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序  模型的默认输入尺寸时... 50层残差网络模型,权重训练自ImageNet  该模型在Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序  模型的默认输入尺寸时... InceptionV3网络,权重训练自ImageNet  该模型在Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序  模型的默认输入尺寸时

    1.5K10

    在TensorFlow中使用模型剪枝将机器学习模型变得更小

    学习如何通过剪枝来使你的模型变得更小 ? 剪枝是一种模型优化技术,这种技术可以消除权重张量中不必要的值。这将会得到更小的模型,并且模型精度非常接近标准模型。...tensorflow_model_optimization用来修剪模型。 load_model用于加载保存的模型。 当然还有tensorflow和keras。...在此之后,我们将把它与修剪过的整个模型进行比较,然后只与修剪过的Dense层进行比较。 接下来,在30个训练轮次之后,一旦模型停止改进,我们就使用回调来停止训练它。...我们定义一个记录模型的文件夹,然后创建一个带有回调函数的列表。 tfmot.sparsity.keras.UpdatePruningStep() 使用优化器步骤更新剪枝包装器。...比较从不同的剪枝参数获得的MSE是有用的,这样你就可以选择一个不会使模型性能变差的MSE。 比较模型大小 现在让我们比较一下有剪枝和没有剪枝模型的大小。我们从训练和保存模型权重开始,以便以后使用。

    1.2K20

    浏览器中的机器学习:使用预训练模型

    在上一篇文章《浏览器中的手写数字识别》中,讲到在浏览器中训练出一个卷积神经网络模型,用来识别手写数字。值得注意的是,这个训练过程是在浏览器中完成的,使用的是客户端的资源。...虽然TensorFlow.js的愿景是机器学习无处不在,即使是在手机、嵌入式设备上,只要运行有浏览器,都可以训练人工智能模型,但是考虑到手机、嵌入式设备有限的计算能力(虽然手机性能不断飞跃),复杂的人工智能模型还是交给更为强大的服务器来训练比较合适...况且目前主流的机器学习采用的是python语言,要让广大机器学习工程师从python转向js,估计大家也不会答应。 如果是这样的话,那TensorFlow.js推出还有何意义呢?...这个问题其实和TensorFlow Lite类似,我们可以在服务器端训练,在手机上使用训练出的模型进行推导,通常推导并不需要那么强大的计算能力。...在本文,我们将探索如何在TensorFlow.js中加载预训练的机器学习模型,完成图片分类任务。

    1.2K20

    能在不同的深度学习框架之间转换模型?微软的MMdnn做到了

    Microsoft/MMdnn:深度学习框架随心切换 学习深度学习的各位同学都希望自己的模型能在不同的深度学习框架之间随意转换,比如,斯坦福大学CVGL实验室的Saumitro Dasgupta就做过一个把...为此,微软就做了一套能在不同的深度学习框架之间进行交互式操作的工具集——MMdnn,它是一个综合性的跨框架解决方案,能够用于深度神经网络模型的转换,可视化及诊断等操作,可在Caffe,Keras,MXNet...正在完善的框架 Pytorch CNTK Caffe2 模型可视化 提交模型的IR json文件,使用MMdnn的模型可视化器来可视化模型结构及参数。...再次以Keras框架的“inception_v3”模型为例。 1. 下载预先训练的模型 2. 预先训练的模型文件转换为中间表示 python3 -m mmdnn.conversion....当你提交pull请求时,CLA机器人将自动确定你是否需要提供CLA并适当地装饰PR(例如标签、注释等)。你只需要按照机器人提供的说明,使用我们的CLA,在整个回购期间完成一次即可。

    1.8K50

    机器学习项目:使用Keras和tfjs构建血细胞分类模型

    机器学习的主要问题: 机器学习是当今人工智能发展的主要组成部分。但民主化人工智能意味着建立一个允许任何人在世界各地使用相同的技术建立强大工具的基础设施。...谷歌合作实验室(colab):谷歌合作实验室是机器学习的主要驱动力,它允许任何拥有谷歌帐户的人访问GPU。如果没有这些GPU,很多人都无法训练需要大量计算的ML模型。...部署模型: 训练完成,我们需要将模型部署到生产环境中,以便每个人都可以使用它。有多种策略可用于部署机器学习系统。我想在客户端机器上运行完整的推理,所以我开始构建一个web应用程序来实现这一点。...使用切片非常有用,因为每个部分可以存储在不同的地方,并且可以在需要时下载,因此我们可以为我们的机器学习模型构建一个分布式存储。model.json是包含每片信息的文件。...如果我们更改了切片的目录,我们可以修改此文件。在API调用中,我们只将model.json文件发送到客户端,tfjs将自动获取每个分片以,在客户端机器上组装一个模型。

    1.6K30

    Azure 机器学习 - 使用无代码 AutoML 训练分类模型

    了解如何在 Azure 机器学习工作室中使用 Azure 机器学习自动化 ML,通过无代码 AutoML 来训练分类模型。 此分类模型预测某个金融机构的客户是否会认购定期存款产品。...二、创建工作区 Azure 机器学习工作区是云中的基础资源,用于试验、训练和部署机器学习模型。 它将 Azure 订阅和资源组关联到服务中一个易于使用的对象。...八、部署最佳模型 使用自动化机器学习界面,你可以通过几个步骤将最佳模型部署为 Web 服务。 部署是模型的集成,因此它可以对新数据进行预测并识别潜在的机会领域。...现在,你已获得一个正常运行的、可以生成预测结果的 Web 服务。 转到后续步骤详细了解如何使用新的 Web 服务,以及如何使用 Power BI 的内置 Azure 机器学习支持来测试预测。...删除部署实例 若要保留资源组和工作区以便在其他教程和探索中使用,请从 https://ml.azure.com/ 处的 Azure 机器学习中仅删除部署实例。 转到 Azure 机器学习。

    23320

    能在不同的深度学习框架之间转换模型?微软的MMdnn做到了

    Microsoft/MMdnn:深度学习框架随心切换 学习深度学习的各位同学都希望自己的模型能在不同的深度学习框架之间随意转换,比如,斯坦福大学CVGL实验室的Saumitro Dasgupta就做过一个把...再次以Keras框架的“inception_v3”模型为例。 1....下载预先训练的模型 python -m mmdnn.conversion.examples.keras.extract_model -n inception_v3 2....预先训练的模型文件转换为中间表示 python3 -m mmdnn.conversion....当你提交pull请求时,CLA机器人将自动确定你是否需要提供CLA并适当地装饰PR(例如标签、注释等)。你只需要按照机器人提供的说明,使用我们的CLA,在整个回购期间完成一次即可。

    1.3K110
    领券