背景:我的一位同事曾提到,他在面试深度学习相关职位中被问到一些关于优化算法的问题。我决定在本文中就优化算法做一个简短的介绍。 成本函数的最优化算法 目标函数是一种试图将一组参数最小化的函数。...找到导致最小值的参数集的算法被称为优化算法。随着算法复杂度的增加,我们会发现它们能够更有效地达到最小值。...在这篇文章中,我们将讨论四种优化算法,包括: 随机梯度下降算法(SGD) Momentum算法 RMSProp算法 Adam算法 随机梯度下降算法 在随机梯度下降算法中,你很可能会遇到这样的方程: ?...这个特点是我们在随机梯度下降算法中所要利用的。 我们可以在下面的代码中看到上述四个步骤的实现。下面的视频显示了θ的值和每个步长的梯度。...你应该注意到,如果θ的初始值较大,那么优化算法将会在另一个局部极小值中出现。
在《接口自动化测试框架-AIM》这篇博客中,提到了parewise算法。 这次对其进行性能优化,共3点。 一、 因为笛卡尔积和两两拆分,是有序的。 就保证了两两拆分后的每列都是相同位置的元素。...60s,优化后45s。...45s,优化后40s。...三、 优化到这里,逐段代码研究,发现没多少优化余地了。 最外层的for循环是笛卡尔积2187次。 每次循环平均0.02s。 40.85s是2187次累加起来的。 无可奈何。...只能优化用户体验了,哈哈哈。 加了个进度条。 ? 过程也有些曲折。 1.
(3)确定进化参数群体规模 N 、交叉概率 pc 、变异概率 pm 2.2遗传算法的一些基本概念: 基因编码(将优化的变量转化为基因的组合表达形式,常见的编码形式有二进制和十进制两种: 二进制编码:...可以看到,大约在11代的时候就能找到最优解,可见遗传算法的强大之处。 ? 注:实现代码见文末 五、遗传算法的应用实例二:解决TSP问题 当然,寻找函数的极值还是不能凸显出遗传算法的强大之处。...检验优化算法还是得用TSP 来检验,并且这次的城市数量我们也上升到了130个 当然了,只有遗传算法还是不太够滴!所以在遗传算法的基础上,我们又添加了改良圈算法来产生初始解。...TSP问题源代码 clc,clear %导入数据 aa = readmatrix('TSP数据-2.csv'); sj = aa([1:129],[3,4]); dl =[sj(1,1),sj(1,2)...参考资料: [1] 司守奎《数学建模算法与程序》 [2] 姜启源,谢金星,叶俊《数学建模》 [3] 包子阳,余继周《智能优化算法及其MATLAB实例》 封面图片:由 Arek Socha 在Pixabay
4) 改善了遗传算法的计算复杂性,提高了运算交率。 5) 便于遗传算法与经典优化方法的混合使用。 6) 便于设计针对问题的专门知识的知识型遗传算子。 7) 便于处理复杂的决策变量约束条件。...代码说明 遗传算法解决TSP旅行商问题 算法分为4个类: GeneticAlgorithm SpeciesIndividual SpeciesPopulation TSPData 数据规模: 10 cities...详细代码 MainRun.java 主函数运行类,也就是程序入口。在这里创建算法类,创建种群,并开始运行我们的算法。得出结果以后,打印出来。...java代码。...最后在多说一句,这代码跑不出最优解也正常。启发式算法求近似解还是得靠人品的胸弟。
最近有人咨询了PSO优化模糊控制论域的问题,正好简单介绍一下粒子群算法。 1、粒子群算法 粒子群算法是一种智能优化算法。关于智能,个人理解,不过是在枚举法的基础上加上了一定的寻优机制。...也就是既要计算量小(速度快),也要准确(精度高),这就是智能算法的来源了,一般的智能算法基本上都是这样的,在很大的搜索空间上,即保证了速度快,也能比较好的找到最优解。...再来看看粒子群算法(也称PSO算法),也是一种进化算法,模拟生物群体的觅食行为,是一种群体智能算法,类似的算法想遗传算法,模拟退火算法等等。...粒子群算法相对于其他算法来说还是有很多优点的,典型的就是计算速度很快,在每次迭代时,所有粒子同时迭代,是一种并行计算方式,而且粒子的更新方式简单,朝着一个优秀解方向更新。...用简单的图表示如下: ---- ---- 2、粒子群的算法步骤 粒子群的核心部分就是上面说到的那两个公式,一个是速度的更新方式,另一个是位置的更新方式,重点还是速度的更新方式; 总结来说,粒子群的算法步骤如下
优化算法框架 优化算法的框架如下所示: $$ w_{t+1} = w_t - \eta_t \ \eta_t = \cfrac{\alpha}{\sqrt{V_t}} \cdot m_t $$...,g_t) \ g_t = \nabla f(w_t) $$ 一阶动量和二阶动量均是历史梯度和当前梯度的函数 优化算法 固定学习率优化算法 学习率固定的优化算法均有一个特点:不考虑二阶动量(即$M..._2(g_i) = I$) 随机梯度下降(SGD) 随机梯度下降时最简单的优化算法,有:$m_t = g_t,V_t = I$,带入公式有优化公式为:$\eta_t = \alpha \cdot g_t...m_{t-1}) \ m_t = \beta \cdot m_{t-1} + (1-\beta)\cdot g_t \ \eta_t = \alpha \cdot m_t $$ 自适应学习率优化算法...自适应学习率的优化算法考虑二阶动量,一般来说,一阶动量决定优化方向,二阶动量自适应学习率 AdaGrad 二阶动量取梯度平方和:$V_t = \sum\limits^t_{i=1} g^2_i$,此时
优化问题一般可分为两大类:无约束优化问题和约束优化问题,约束优化问题又可分为含等式约束优化问题和含不等式约束优化问题。...无约束优化问题 含等式约束的优化问题 含不等式约束的优化问题 针对以上三种情形,各有不同的处理策略: 无约束的优化问题:可直接对其求导,并使其为0,这样便能得到最终的最优解; 含等式约束的优化问题:主要通过拉格朗日乘数法将含等式约束的优化问题转换成为无约束优化问题求解...; 含有不等式约束的优化问题:主要通过KKT条件(Karush-Kuhn-Tucker Condition)将其转化成无约束优化问题求解 ?
在此基础上,提出了一种基于元启发式( metaheuristic)的粒子群优化算法来模拟鸟类觅食、鱼群移动等。这种算法能够模拟群体的行为,以便迭代地优化数值问题。...)的强大算法,受鸟群中的规则启发,连续优化过程允许多目标和更多的变化。...重要的是要提到粒子群算法不使用梯度下降,所以它可以用于非线性问题,只要它不要求问题必须是可微的。 C++/Python代码可参考该仓库。 2....---- 粒子群优化算法伪代码: 其中: V i ( k + 1 ) V_i(k+1) Vi(k+1) 是下一个迭代速度; W W W 是惯性参数。...为了测试算法,Rastrigin函数将被用作误差函数,这是优化问题中最具挑战性的函数之一。在平面上有很多余弦振荡会引入无数的局部极小值,在这些极小值中,boid会卡住。
简介 深度学习网络中参数更新的优化方法主要分为两种: 调整学习率,使得优化更稳定 梯度估计修正,优化训练速度 2. 常用优化方法汇总 image.png 3....L,⋯,∂Wt∂L) 其中, 是第 步的梯度, 是第 步的学习率(可以进行衰减,也可以不变); 是学习率缩放函数,可以取 1 或者历史梯度的模的移动平均; 是优化后的参数更新方向
在写系统的i2c driver的时候,从參考板拿来一份轮询的driver sample,改完之后就直接提交代码到系统库,主要的測试都没有问题,一直到系统级别測试,发现和其它系统的交流的某个task A偶尔会...monitor log里面发现当task A timeout的时候,i2c driver task占用CPU百分比非常高,而i2c driver task仅仅是简单的读取操作,并且读取次数也不多,细致查看轮询代码...第二个问题就更有意思u时候遇到的,折腾了近1个月,在系统的end to end測试中,发现一旦Call的数目上去之后,有一个task的CPU使用率过高,有怀疑过硬件性能不行,也有怀疑过系统压力过大,最后还是看代码看到一个有意思的地方...一看到三重循环就非常紧张,每次task运行就是368*3*2次循环体,谨遵循环优化办法:把推断条件能外移的外移,同一时候也把code里面的除法都改成了移位操作。CPU使用过高问题得到解决。 3....所以系统级别的測试希望手机ftp的速率能够上到3.1mpbs,结果整个系统一直处于崩溃状态,找高通询问他们芯片的处理能力,找自己系统的代码处理能力瓶颈,最后发现overhead没考虑,所以才会出现系统负载只是来的情况
今天组长闲着没活干就审核我们的代码 因为我写的代码是比较完美的 也算是鸡蛋里挑骨头吧 主要下面几个问题 组长:springmvc spring 的bean生成模式 一般都是采用默认的单例模式 所以不要随意把变量定义成类变量
遗传算法的基本概念 遗传算法(Genetic Algorithm, GA)是由Holland提出来的,是受遗传学中的自然选择和遗传机制启发发展起来的一种优化算法,它的基本思想是模拟生物和人类进化的方法求解复杂的优化问题...基本定义 个体(individual):在遗传学中表示的是基因编码,在优化问题中指的是每一个解。 适应值(fitness):评价个体好坏的标准,在优化问题中指的是优化函数。...( 1-a_2 \right )x_2,\cdots ,a_ny_n+\left ( 1-a_n \right )x_n \right ) 变异(mutation) 变异操作的目的是使得基因突变,在优化算法中...实验代码 #include #include #include #include #include using...我在这里简单介绍了遗传算法,遗传算法是一个研究较多的算法,还有利用遗传算法求解组合优化问题,带约束的优化问题,还有一些遗传算法的理论知识,如模式定理,积木块假设,在这里就不一一列举了,希望我的博文对你的学习有帮助
遗传算法的基本概念 遗传算法(Genetic Algorithm, GA)是由Holland提出来的,是受遗传学中的自然选择和遗传机制启发发展起来的一种优化算法,它的基本思想是模拟生物和人类进化的方法求解复杂的优化问题...基本定义 个体(individual):在遗传学中表示的是基因编码,在优化问题中指的是每一个解。 适应值(fitness):评价个体好坏的标准,在优化问题中指的是优化函数。...适应度函数的计算 适应度函数的目的是评价个体的好坏,如上面的优化问题中,即为最终的优化目标函数。...实验代码 #include #include #include #include #include using...我在这里简单介绍了遗传算法,遗传算法是一个研究较多的算法,还有利用遗传算法求解组合优化问题,带约束的优化问题,还有一些遗传算法的理论知识,如模式定理,积木块假设,在这里就不一一列举了,希望我的博文对你的学习有帮助
高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果(参见尺度空间表示以及尺度空间实现)。 从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积。...代码献上: inline int* buildGaussKern(int winSize, int sigma) { int wincenter, x; float sum = 0.0f; wincenter...这份代码,实测速度非常糟糕,处理一张5000x3000在半径大小5左右都要耗时十来秒至几十秒不等,实在难以接受。 由于速度的问题,网上就有不少优化算法的实现。...之前我也发过一篇《快速高斯模糊算法》,在同等条件下,这个算法已经比如上算法快上十几倍。 由于这份代码实在难以阅读学习,所以,我对其进行了进一步的调整和优化。...unsigned char)(cr* fkernelsum); } } free(CacheImg); } free(kernel); free(mult); } 其中有部分算法优化技巧
多目标优化问题 当优化问题的目标函数为两个或两个以上时,该优化问题就是多目标优化。...NSGA-Ⅱ NSGA-Ⅱ是基于遗传算法,引入快速非支配排序方法、拥挤度计算和精英策略的多目标优化计算方法。...伪代码如下: 拥挤度计算:拥挤度计算是用于表现同一非支配等级个体之间的距离,在算法中使用是为了保证种群个体的多样性,避免陷入局部最优解。...二进制交叉策略公式: 精英保留策略:是将父代种群和生成子代种群一起进行比较,比较策略与选择策略时相同,从而将最优的个体保留到子代种群中去,可以加快优化算法的迭代,避免陷入局部最优解。 4....以下为完整代码:
Adam优化算法 基本思想是把动量梯度下降和RMSprop放在一起使用。...Adam优化算法计算方法 动量梯度下降部分: vdw=β1vdw+(1−β1)dWv_{dw}=\beta_1 v_{dw}+(1-\beta_1)dWvdw=β1vdw+(1−β1)dW...这是Adam名称的由来,大家一般称之为:Adam Authorization Algorithm(Adam权威算法)。 默认参数值选取 α\alphaα 学习速率是你需要是调参的。...β2=0.999\beta_2=0.999β2=0.999 -> dw2dw^2dw2 -> (dw2)(dw^2)(dw2) RMSprop term. 0.999出自Adam paper,即该算法提出者
k-means算法的优、缺点 1、优点: ①简单、高效、易于理解 ②聚类效果好 2、缺点: ①算法可能找到局部最优的聚类,而不是全局最优的聚类。使用改进的二分k-means算法。...优化方法 二分k-means算法:首先将整个数据集看成一个簇,然后进行一次k-means(k=2)算法将该簇一分为二,并计算每个簇的误差平方和,选择平方和最大的簇迭代上述过程再次一分为二,直至簇数达到用户指定的...算法进行细聚类。...k-means算法的k值自适应优化算法:首先给定一个较大的k值,进行一次k-means算法得到k个簇中心,然后计算每两个簇中心之间的距离,合并簇中心距离最近的两个簇,并将k值减1,迭代上述过程,直至簇类结果...参考: k-means算法、性能及优化
智能优化算法神经网络算法利用的是目标函数导数信息去迭代更新参数,选找目标函数最优值。智能优化算法是一种收索算法,也是通过迭代,筛选,选找目标函数最优值(极值)。...一般步骤为:给定一组初始解评价当前这组解的性能从当前这组解中选择一定数量的解作为迭代后的解的基础在对其操作,得到迭代后的解若这些解满足要求则停止,否则将这些迭代得到的解作为当前解重新操作智能优化算法包含有许多...,比如粒子群优化算法(PSO),飞蛾火焰算法(MFO)...等一.飞蛾火焰算法(MFO)算法核心思想:飞蛾以螺旋线运动方式不断靠近火焰,痛过对火焰的筛选,不断选出离目标函数极值最接近的位置。...具体内容在代码注释中。...用随机的位置与该鲸鱼位置做差,然后用该随机的位置和做差后的值继续做差,去更新鲸鱼位置三.樽海鞘群优化算法(SSA)算法核心思想:与MFO类似,初始化鱼群后,对其求自适应度,然后进行排序,记录最小位置(也就是最优位置
最近在学遗传算法优化BP神经网络,从新浪博客,Matlab中文论坛以及《MATLAB 神经网络43个案例分析》里看了许多资料, 存在着缺少test函数,以及函数名调用错误等问题。...ylabel(‘适应度’); legend(‘平均适应度’,’最佳适应度’); disp(‘适应度 变量’); %% 把最优初始阀值权值赋予网络预测 % %用遗传算法优化的...有用上面代码测试过其他较复杂数据的可能会发现上面代码跑起来要耗费许多时间,有网友给我发了一个遗传算法工具箱(gaot),我测试了一下,发现跑得飞起。...我在使用这串代码时发现添加遗传算法,结果并没有提升很多,搜了一众论文,发现大多论文里面使用的训练算法都是traingd, 这个训练算法收敛很慢,感觉它一直在最小值附近转悠。...这个算法修改了网络的代价函数,训练算法使用的还是LM,相当于trainlm 的一个进化版。在使用这个算法后,我发现遗传算法有点效果了。 从我自己的数据看,优化是有那么点效果的。
一、引言 在机器学习问题中,很多的算法归根到底就是在求解一个优化问题,然而我们的现实生活中也存在着很多的优化问题,例如道路上最优路径的选择,商品买卖中的最大利润的获取这些都是最优化的典型例子,前面也陆续地有一些具体的最优化的算法...,如基本的梯度下降法,牛顿法以及启发式的优化算法(PSO,ABC等)。...三、三类优化问题 主要有三类优化问题: 无约束优化问题 含等式约束的优化问题 含不等式约束的优化问题 针对上述三类优化问题主要有三种不同的处理策略,对于无约束的优化问题,可直接对其求导...四、正则化 在“简单易学的机器学习算法——线性回归(1)”中,在处理局部加权线性回归时,我们碰到了如下的三种情况: ? ? ? ? ? ? 当 ? 时模型是欠拟合的,当 ? 时模型可能会出现过拟合。...正则化主要有两种: L1-Regularization,见“简单易学的机器学习算法——lasso” L2-Regularization,见“简单易学的机器学习算法——岭回归(Ridge Regression
领取专属 10元无门槛券
手把手带您无忧上云