首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从dataframe绘制python

Dataframe是Pandas库中的一个数据结构,类似于表格或电子表格,可以存储和处理二维数据。在Python中,可以使用Matplotlib和Seaborn等库来绘制Dataframe中的数据。

绘制Dataframe的步骤如下:

  1. 导入所需的库和模块:
代码语言:txt
复制
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
  1. 创建一个Dataframe对象:
代码语言:txt
复制
data = {'Name': ['John', 'Emma', 'Mike', 'Sophia'],
        'Age': [25, 28, 30, 27],
        'Salary': [50000, 60000, 55000, 52000]}
df = pd.DataFrame(data)
  1. 绘制柱状图:
代码语言:txt
复制
plt.bar(df['Name'], df['Salary'])
plt.xlabel('Name')
plt.ylabel('Salary')
plt.title('Salary Distribution')
plt.show()
  1. 绘制折线图:
代码语言:txt
复制
plt.plot(df['Name'], df['Age'])
plt.xlabel('Name')
plt.ylabel('Age')
plt.title('Age Distribution')
plt.show()
  1. 绘制散点图:
代码语言:txt
复制
plt.scatter(df['Age'], df['Salary'])
plt.xlabel('Age')
plt.ylabel('Salary')
plt.title('Age vs Salary')
plt.show()
  1. 绘制箱线图:
代码语言:txt
复制
sns.boxplot(x=df['Name'], y=df['Salary'])
plt.xlabel('Name')
plt.ylabel('Salary')
plt.title('Salary Distribution')
plt.show()

以上是一些常见的Dataframe绘图方法,可以根据具体需求选择合适的图表类型。另外,腾讯云提供了云服务器、云数据库、云存储等相关产品,可以根据实际情况选择适合的产品进行数据存储和处理。

参考链接:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

DataFrame中删除列

在操作数据的时候,DataFrame对象中删除一个或多个列是常见的操作,并且实现方法较多,然而这中间有很多细节值得关注。...如果要改变原有的DataFrame,可以增加一个参数inplace=True。...如果这些对你来说都不是很清楚,建议参阅《跟老齐学Python:数据分析》中对此的详细说明。 另外的方法 除了上面演示的方法之外,还有别的方法可以删除列。...因此,如果要让f.d与f['d']等效,还必须要在StupidFrame类中添加 __getattr__ 方法,并使用__setattr__方法来处理设置问题(关于这两个方法的使用,请参阅《Python...当然,并不是说DataFrame对象的类就是上面那样的,而是用上面的方式简要说明了一下原因。 所以,在Pandas中要删除DataFrame的列,最好是用对象的drop方法。

7K20
  • python DataFrame数据生成

    如下图所示,基本上可以把DataFrame看成是Excel的表格形态: ? 接下来我们根据创建DataFrame的基本要求将data、index、columns这三个参数准备就绪。...()生成DatetimeIndex格式的日期序列,其中参数包括:起始时间start、结束时间end、时期数量periods、日期间隔频率freq='M’月、'D’天、‘W’、周、'Y’年等等,此处生成2010...此处以ndarray组成的字典形式创建DataFrame,字典每个键所对应的ndarray数组分别成为DataFrame的一列,共享同一个 index ,例程如下所示: df_stock = pd.DataFrame...此处我们先通过Pandas封装的matplotlib绘图功能,绘制其中50个交易日收盘价曲线,用可视化的方式了解下随机漫步的股价走势,如下所示: import matplotlib.pyplot as...plt #绘制收盘价 df_stock.close[100:150].plot(c='b') plt.legend(['Close'],loc='best') plt.show() ?

    2K20

    Python库介绍15 DataFrame

    DataFrame是pandas库中另一个重要的数据结构,它提供了类似于excel的二维数据结构使用pandas.DataFrame()函数可以创建一个DataFrame数据类型【用数组创建DataFrame...】import pandas as pdimport numpy as npa=np.random.uniform(0,150,size=(5,3)).astype('int32')df=pd.DataFrame...(a)df我们首先使用random.uniform生成了一个5*3的矩阵a,它的每个元素是0~150的随机数然后用DataFrame()函数把矩阵a转换为DataFrame类型可以看到,在jupyter...中,dataframe的显示非常直观,上面第一行是它的列索引(默认为0,1,2)左边第一列是它的行索引(默认为0,1,2,3,4)中间的区域是我们的数据DataFrame跟series类似,可以使用index...(a,index=line,columns=columns)df【用字典创建DataFrame】pandas还支持字典创建DataFrame字典的键(key)将作为列索引,值(value)将作为一个个数据

    13710

    (六)Python:Pandas中的DataFrame

    自定义生成行索引 使用 索引与值 基本操作 统计功能  ---- 基本特征 一个表格型的数据结构 含有一组有序的列(类似于index) 大致可看成共享同一个index的Series集合 创建         DataFrame...与Series相比,除了可以每一个键对应许多值之外,还增加了列索引(columns)这一内容,具体内容如下所示: 自动生成行索引         DataFrame也能自动生成行索引,索引0开始,代码如下所示...frame = pd.DataFrame(data) #自定义行索引 print(frame) 运行结果如下所示:     name      pay 0  aaaaaa  4000 1  bbbbbb... 5000 2  cccccc   6000 自定义生成行索引        DataFrame除了能创建自动生成行索引外,还能自定义生成行索引,代码如下所示:  import pandas as...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大的统计功能,它有大量的函数可以使用

    3.8K20

    Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series、DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签...构建Series或DataFrame时,所用到的任何数组或其他序列的标签都会被转换成一个Index。 Index对象是不可修改的。...4. pandas的主要Index对象 Index 最泛化的Index对象,将轴标签表示为一个由Python对象组成的NumPy数组 Int64Index 针对整数的特殊Index MultiIndex...操作Series和DataFrame中的数据的基本手段 5.1 重新索引 reindex 5.2 丢弃指定轴上的项 drop 5.3 索引、选取和过滤(.ix) 5.4 算数运算和数据对齐 DataFrame...和Series之间的算数运算默认情况下会将Series的索引项 匹配到DataFrame的列,然后沿着行一直向下广播。

    3.9K50

    python 全方位访问DataFrame格式数据

    可以访问DataFrame全部的行索引,DataFrame.columns可以访问DataFrame全部的列索引 我们用DataFrame.axes查看交易数据行和列的轴标签基本信息,DataFrame.axes...等价于DataFrame.index结合DataFrame.columns 2.行/列元素访问 DataFrame.values可以访问DataFrame全部元素数值,以numpy.ndarray数据类型返回...某列内容访问可以通过类似字典标记或属性的方式,比如DataFrame[‘Open’]或是DataFrame.Open方式,返回得到的’Open’列元素其实是Series数据结构(类似数组) 某行内容可以用切片式访问...,比如访问索引0开始的第一行元素,我们使用DataFrame[0:1]方式,返回得到的元素是DataFrame数据结构 3.元素级的访问 元素级访问有三种: loc是通过标签方式选取数据,iloc是通过位置方式选取数据...1.DataFrame.iloc[0:2]选取前两行所有列元素, 2.DataFrame.iloc[0:2,0:1]选取前两行第一列元素 3.DataFrame.iloc[[0,2],[0,1]]选取

    1.2K20
    领券