从API获取数据并在MySQL中插入数据花费的时间过长,可能是由于多种因素造成的。以下是一些基础概念、优势、类型、应用场景以及可能的原因和解决方法:
import concurrent.futures
import requests
def fetch_data(url):
response = requests.get(url)
return response.json()
urls = ['http://api.example.com/data1', 'http://api.example.com/data2']
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
results = list(executor.map(fetch_data, urls))
import mysql.connector
db = mysql.connector.connect(host="localhost", user="user", password="password", database="database")
cursor = db.cursor()
data_to_insert = [(1, 'Alice'), (2, 'Bob'), (3, 'Charlie')]
insert_query = "INSERT INTO users (id, name) VALUES (%s, %s)"
cursor.executemany(insert_query, data_to_insert)
db.commit()
from mysql.connector.pooling import MySQLConnectionPool
pool = MySQLConnectionPool(pool_name="mypool", pool_size=5, host="localhost", user="user", password="password", database="database")
connection = pool.get_connection()
cursor = connection.cursor()
# 执行数据库操作
asyncio
和aiomysql
进行异步数据库操作。import asyncio
import aiomysql
async def insert_data(data):
conn = await aiomysql.connect(host='localhost', user='user', password='password', db='database')
cur = await conn.cursor()
await cur.executemany("INSERT INTO users (id, name) VALUES (%s, %s)", data)
await conn.commit()
cur.close()
conn.close()
data_to_insert = [(1, 'Alice'), (2, 'Bob'), (3, 'Charlie')]
asyncio.run(insert_data(data_to_insert))
通过上述方法,可以有效减少从API获取数据并在MySQL中插入数据的时间。根据具体情况选择合适的优化策略。
领取专属 10元无门槛券
手把手带您无忧上云