首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R中绘制环状聚类热图

    欢迎关注R语言数据分析指南 ❝最近有朋友需要绘制环状热图叠加多层注释,本节来通过一个例子来简单介绍一下如何实现,主要通过「ggtreeExtra」来实现,聚类分析使用「ape」包来进行更加适用于生物信息相关的数据...「数据代码已经整合上传到2023VIP交流群」,加群的观众老爷可自行下载,有需要的朋友可关注文末介绍加入VIP交流群。...❞ 关于永久群内容的说明 ❝给予长期支持我们的忠实读者们一个特别待遇:凡是购买过小编2022年或2023年VIP会员文档的朋友们,「将自动获得2024年及以后的绘图资料和代码更新,无需额外付费。」...目前这两年的会员文档已累记卖出1500+,质量方面各位无需担忧**。简要概括就是只要购买任意1年的会员内容,2024及后期公众号所更新的绘图文档均会在已经加入的会员群内分享。...❞ 加载R包 library(tidyverse) library(ggtree) library(treeio) library(ape) library(magrittr) library(ggnewscale

    40120

    如何在 seaborn 中创建三角相关热图?

    在本教程中,我们将学习在 seaborn 中创建三角形相关热图;顾名思义,相关性是一种度量,用于显示变量的相关程度。相关热图是一种表示数值变量之间关系的图。...它提供了几个图来表示数据。在熊猫的帮助下,我们可以创造有吸引力的情节。在本教程中,我们将说明三个创建三角形热图的示例。最后,我们将学习如何使用 Seaborn 库来创建令人惊叹的信息丰富的热图。...语法 这是创建三角形相关热图的语法。...sns.heatmap() 创建了一个热图。...使用Seaborn创建热图对于必须探索和理解大型数据集中的相关性的数据科学家和分析师非常有用。借助这些热图,数据科学家和分析师可以深入了解他们的数据,并根据他们的发现做出明智的决策。

    38110

    浅谈R中相关性网络热图绘制小细节

    ❝最近在绘制相关性网络热图的时候突然有一个小的发现,可以使用相关性热图的数据来结合「linkET」来绘图,以前一直认为为必须使用「mantel_test」才行;果然绘图还得多思考;本节就来通过一个案例将两份数据结合起来进行绘图...; 加载R包 library(tidyverse) library(linkET) library(RColorBrewer) library(ggtext) library(magrittr) library...,"p","p_signif")) 转换数据格式 ❝在此处以前一直以为必须使用「linkET::mantel_test」函数生成特定格式才能用于后面绘图,直到某次看了数据才明白导入外部的相关性分析数据也能用于后期绘图...;此处的范围可根据需要自定义 ❞ cordata % left_join(....(-Inf, 0.01, 0.05, Inf), labels = c("= 0.05"))) 绘制相关性网络图

    3K33

    【科研猫·绘图】今夏最热的“热图”(带R代码分享)

    如何做出一张完美的热图,是居家旅行(科研写作),拜访亲朋好友(征服editor和reviewer的心)必备技能。本次教程,我们将为大家详细讲述如何使用R语言绘制高大上的热图。 ?...什么是热图,比如上图是来源于两篇CNS级别文章中截取下来的主图,一眼看去,一张合格的热图主要由四大部分组成,一个是像浴室瓷砖一样的小色块铺成的色板,也可以称作热图本身,是热图必不可少的部分,一个是色板上面的聚类树...热图的本质是表现数值矩阵,色板中的每个方格都是一个数值,按照色彩变化尺的要求,根据数值大小显示出不同颜色。...本次教程介绍pheatmap这个R包,此包功能强大,制作热图方便给力。 1. pheatmap包安装及加载 我们先在R上安装pheatmap这个包,首先打开Rstudio。 ? 2....使用color颜色更改颜色变化尺之后的热图会更好看啦。我们可以参考文章中的绘图颜色,这样会让我们的热图更富有视觉效果。 ?

    6.9K21

    ggplot画图:y坐标从0开始,去除x横坐标与柱状图之间的间隙

    [toc] 直接看图解释 image.png 由上图,我们可以看到,1)x横坐标与柱状图有一些距离,那么现在我们要去掉这个距离。怎么办?,2)还发现,y坐标与柱状图也是有距离的。咋去除?...1.横坐标从0开始 首先将gear与carb转成factor # libraries library(ggthemes) library(tidyverse) df=mtcars %>% mutate(...0.65) # start from 0 in x-axis p + scale_y_continuous(expand = c(0,0),limits = c(0,30)) image.png 2.纵坐标从...0开始 这里有些trick,因为factor为横坐标,但是加载scale_x_continuous出错, 所以在scale_x_continuous里面,自定义x-labels。...labels = c(3,4,5)) p image.png image.png 2.去除网格线与legend scale_fill_manual可以更改柱状图的颜色

    3.4K20

    主成分分析(PCA)在R 及 Python中的实战指南

    这种主导普遍存在是因为变量有相关的高方差。当变量被缩放后,我们便能够在二维空间中更好地表示变量。 在Python & R中应用 主成分分析方法 (带有代码注解) ▼ 要选多少主成分?...换句话说,利用主成分分析算法,我们将预测值从44个降到30个,而不影响说明的方差。这就是主成分分析算法的强大之处。让我们通过绘制一个累计方差图做确认核查。它将向我们展示成分数量的清晰画面。...让我们在R中做一下: #加上带主成分的训练集 > train.data 的分数排行榜感到高兴。试试用下随机森林。 对于Python用户:为了在Python中运行主成分分析,只需从sklearn库导入主成分分析。...和上文提到的对R用户的解释是一样的。当然,用Python的结果是用R后派生出来的。Python中所用的数据集是清洗后的版本,缺失值已经被补上,分类变量被转换成数值型。

    2.9K80
    领券