OD数据是交通、城市规划以及GIS等领域常见的一类数据,特点是每一条数据都记录了一次OD(O即Origin,D即Destination)行为的起点与终点坐标信息。
「OD数据」是交通、城市规划以及GIS等领域常见的一类数据,特点是每一条数据都记录了一次OD(O即Origin,D即Destination)行为的起点与终点坐标信息。
前不久「贝壳研究院」基于其丰富的房地产相关数据资源,发布了「2020 新一线城市居住报告」:
前不久贝壳研究院基于其丰富的房地产相关数据资源,发布了2020 新一线城市居住报告:
GeoPandas是一个Python开源项目,旨在提供丰富而简单的地理空间数据处理接口。 GeoPandas扩展了Pandas的数据类型,并使用matplotlib进行绘图。GeoPandas官方仓库地址为:GeoPandas。 GeoPandas的官方文档地址为:GeoPandas-doc。 本文主要参考GeoPandas Examples Gallery。 GeoPandas的基础使用见Python绘制数据地图1-GeoPandas入门指北。 GeoPandas的可视化入门见Python绘制数据地图2-GeoPandas地图可视化。
大家好我是费老师,很多读者朋友跟随着我先前写作的基于geopandas的空间数据分析系列教程文章(快捷访问地址:https://www.cnblogs.com/feffery/tag/geopandas/),掌握了有关geopandas的诸多实用方法,从而更方便地在Python中处理分析GIS数据。其中在文件IO篇中给大家介绍过针对ESRI GeoDataBase格式的文件(也就是大家简称的gdb文件),可以在指定图层名layer参数后进行读取,但无法进行gdb文件的写出操作。
这是一篇关于关于空间地理信息数据可视化与simple feature 模型应用的笔记小结。
如何用Python分析诸如各国人口和GDP数据,各省市房价等地理相关数据,并在地图上优雅地展示你的结果?你需要geopandas!?? 一,GeoPandas总体介绍 geopandas 是pand
在上一篇文章中我们对geopandas中的数据结构展开了较为全面的学习,其中涉及到面积长度等计算的过程中提到了具体的计算结果与所选择的投影坐标系关系密切,投影坐标系选择的不恰当会带来计算结果的偏差,直接关乎整个分析过程的有效与否。
为了拓展python在地学的应用,一个比较流行的库geopandas,还是有必要接触的,但是接触的第一感觉就并不是太友好,对于其geometry的设定,初衷是不错的,可是体验效果有点糟糕,但是打开其中的字段,呈现的不是数据,而是矢量对象(如面图层),对我刚接触的人来说算是意外,但对于我更敏感的数据层面,我觉得按照pandas数组或者numpy数据的习惯而言,第一手应该还是数据,可能比较容易接受(个人偏见,慢慢深入之后应该会有改观)。另外geometry的数据量偏大的时候很容易造成打开速度变慢。
我回答目前常用的库包不能直接绘制这样的桑基图,我错了,应该回答是目前常用的库包不能绘制这样漂亮些的桑基图。
目录 前言 geopandas简介 子区域数据分类统计 总结 一、前言 最近碰到一个需求,需要统计某省内的所有市的某数据分布情况信息。现有该省的数据分布情况以及该省的行政区划数据。我通过geopandas库实现了这一需求,在这里简单记录之,供需要的人借鉴。 二、geopandas简介 想必大家对pandas都不陌生,它是一个开源的强大的Python数据分析工具。pandas确实做到了灵活、快速、高效的进行数据处理,而geopandas是在pandas的基础上添加了对空间数据的支持,实现了读取空
在上一篇文章中我们对geopandas中的坐标参考系有了较为深入的学习,而在日常空间数据分析工作中矢量文件的读入和写出,是至关重要的环节。
说到地理加权回归,相信大家肯定不会陌生。作为一种先进的空间数据分析技术,地理加权回归能够充分捕捉空间关系的非平稳性。举个简单的不恰当的例子,我们要对中国各个城市的奢侈品消费量与人均收入进行建模。正常的的理解是人均收入越高,奢侈品消费量就越大,在全国各个城市都应该是这种关系(这也正是全局模型的前提假设)。但事实真的是这样吗?现实情况可能是在一些比较张扬的地方(比如我们大东百
以前我一直觉得Python的绘图工具与R语言ggplot2比起来,不够优雅,这也是我一直坚定的选择使用R+ggplot2深入的学习数据可视化的原因,ggplot2在坐标系的整合与兼容性和扩展性上确实技高一筹,所以ggplot2成了可视化的巨无霸,成了可视化界的微信,不仅自身生态日趋完善,而且还有众多的开发者为其开发辅助功能包(你可以理解为依附于微信的小程序)。 最近偶然在学习Python可视化的过程中,了解到了geopandas,确实第一眼看着很眼熟,或许你第一眼就能把它与pandas联系起来。的确,它跟
本期我们试着使用Python-geopandas包绘制空间地图,主要的知识点如下:
上一期的地图可视化推文教程R-ggplot2 标准中国地图制作中,我们详细介绍了使用R-ggplot2 包完美绘制中国标准地图,本期推文我们则试着使用Python-geopandas包绘制空间地图,主要的知识点如下:
通过前面的文章,我们已经对geopandas中的数据结构、坐标参考系以及文件IO有了较为深入的学习,在拿到一份矢量数据开始分析时,对其进行可视化无疑是探索了解数据阶段重要的步骤。
通过前面的文章,我们已经对geopandas中的数据结构、坐标参考系以及文件IO有了较为深入的学习。
最近学习地理信息可视化总是遇到投影的麻烦,包括前段时间输出两篇关于simple features的分享中,其中没有特别处理投影的问题,老司机一看就能看出其中存在的投影问题。
空间索引方法有助于加速空间查询。大多数 GIS 软件和数据库都提供了一种机制来计算和使用数据图层的空间索引。QGIS 和 PostGIS 使用基于 R-Tree 数据结构的空间索引方案 - 它使用几何边界框创建分层树。这是非常有效的,并在某些类型的空间查询中产生了很大的加速。查看我的高级 QGIS 课程的空间索引部分,我将展示如何在 QGIS 中使用基于 R 树的空间索引。
在上一篇文章中我们详细学习了geoplot中较为基础的三种绘图API:pointplot()、polyplot()以及webmap(),而本文将会承接上文的内容,对geoplot中较为实用的几种高级绘图API进行介绍。
大家好我是费老师,就在昨天,Python生态中著名的GIS分析库geopandas发布了其1.0.0正式版本。
在前面的基于geopandas的空间数据分析系列文章中,我们已经对geopandas的基础知识、基础可视化,以及如何科学绘制分层设色地图展开了深入的学习,而利用geopandas+matplotlib进行地理可视化固然能实现常见的地图可视化,且提供了操纵图像的极高自由度,但对使用者matplotlib的熟悉程度要求较高,制作一幅地图可视化作品往往需要编写较多的代码。
在前面的基于geopandas的空间数据分析系列文章中,我们已经对geopandas的基础知识、基础可视化,以及如何科学绘制分层设色地图展开了深入的学习,而利用geopandas+matplotlib进行地理可视化固然能实现常见的地图可视化,且提供了操纵图像的极高自由度,但对使用者matplotlib的熟悉程度要求较高,制作一幅地图可视化作品往往需要编写较多的代码,而geoplot基于geopandas,提供了众多高度封装的绘图API,很大程度上简化了绘图难度,就像seaborn之于matplotlib。
最近一段时间(本文写作于2020-07-10)geopandas与geoplot两个常用的GIS类Python库都进行了一系列较为重大的内容更新,新增了一些特性,本文就将针对其中比较实际的新特性进行介绍。
通常情况下,在执行 EDA 时,我们会面临显示有关地理位置的信息的情况。例如,对于 COVID 19 数据集,人们可能希望显示各个区域的病例数。这是 Python 库 GeoPandas 的用武之地。
由于对空间数据可视化的喜欢,可能本公众号的推文也以此类图较多,当然也受到小伙伴的喜欢。在R语言ggplot2以及其拓展包能够较为简单的实现各类空间可视化作品的绘制,在寻找Python进行空间绘制包的同时,也发现如geopandas、geoplot等优秀包,今天的推文就简单使用geoplot库绘制空间核密度估计图,涉及的知识点如下:
首先,我们需要安装 geopandas 和 shapely 库。可以通过以下命令来安装:
开门见山,今天我们要模仿的数据可视化作品来自 「#TidyTuesday」 活动于2020年1月28日发布的「旧金山街道树木数据集」下的众多参赛作品中,由Philippe Massicotte创作的(如图1所示)非常受欢迎的 「Street trees of San Francisco」:
开门见山,今天我们要模仿的数据可视化作品来自#TidyTuesday活动于2020年1月28日发布的旧金山街道树木数据集下的众多参赛作品中,由Philippe Massicotte创作的(如图1所示)非常受欢迎的Street trees of San Francisco:
报错原因是由于Fiona库在写入shapefile文件时,遇到了无法转换为ISO-8859-1编码的字符。Shapefile的标准不支持UTF-8编码,因此在处理包含非ISO-8859-1字符(例如中文)的字段时,可能会出现问题。 下面介绍两种方法
PostGIS作为postgresql针对地理空间数据的拓展功能,可以帮助我们有效管理和固化空间矢量数据,以及开展空间数据分析,而geopandas作为Python生态中优秀的空间数据分析处理工具,自然在与PostGIS进行交互方面开发了相应的功能。
什么是白化?我在一年前也是头一次接触到这个词语,其实就是将你不需要的部分的等值线、等值线填色、风场、流场等挖去。目前气象领域流行的是花式利用地图shp文件进行操作,达到白化的目的。
涉及到空间数据处理的时候,为了比较清晰方便的看出空间数据所处的区域,通常都需要将省市边界线加到地图中。
是不是感觉被封面图和不明觉厉的题目给骗进来了哈哈哈,今天这篇是理论篇,没有多少案例,而且还很长,所以静不下心的小伙伴儿可以先收藏着,时间充裕了再看。 ---- 当今互联网和大数据发展的如此迅猛,大量的运营与业务数据需要通过可视化呈现来给商业分析人员提供有价值的决策信息,而地理信息与空间数据可视化则是可视化分析中至关重要而且门槛较高的一类。 通常除了少数本身具备强大前端开发能力的大厂之外,很多中小型企业在内部预算资源有限的情况下,并不具备自建BI和完整可视化框架的能力。需要借助第三方提供的开源可视化平台或者
PostGIS作为postgresql针对「地理空间数据」的拓展功能,可以帮助我们有效管理和固化空间矢量数据,以及开展空间数据分析,而geopandas作为Python生态中优秀的空间数据分析处理工具,自然在与PostGIS进行交互方面开发了相应的功能。
大家好我是费老师,在日常研发地图类应用的场景中,为了在地图上快速加载大量的矢量要素,且方便快捷的在前端处理矢量的样式,且矢量数据可以携带对应的若干属性字段,目前主流的做法是使用矢量切片(vector tiles)的方式将矢量数据发布为服务进行调用:
❝本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes ❞
就在几天前,geopandas释放了其最新正式版本0.9.0,作为一次比较大的版本更新,geopandas为我们带来了一系列新特性,今天的文章我们就来一起看看有哪些主要的功能变化吧~
最近研究了下postgresql数据库及其空间地理信息拓展插件——postgis。
Error: Exported bands must have compatible data types; found inconsistent types: Int16 and Byte. (Error code: 3)
领取专属 10元无门槛券
手把手带您无忧上云