系统的异常级别对于arm芯片来说非常的重要,对于操作系统层面上来说,理解芯片的体系架构,将很容易的进入状态,随心所欲的去玩转芯片,对于做应用来说,熟悉芯片的体系架构,可以解决非常棘手的问题,比如系统的安全还有就是实时性响应问题。比如我们的手机指纹加密数据,实际上是在安全模式下的,此时对于运行在非安全模式下的操作系统,其实是获取不到指纹的数据的,只是处理安全模式下发送过来的结果,类似的还有支付安全。
根据实现选择,体系结构支持多级执行特权,由从EL0到EL3的不同异常级别表示。EL0对应于最低的特权级别,通常被描述为无特权。应用层程序员模型是在EL0上执行软件的程序员模型。
--[ 0 - 简介 直到最近,为了在运行时攻击者破坏整个系统 发现并利用内核漏洞。这使他们能够执行 各种动作;在内核上下文中执行恶意代码, 修改内核数据结构以提升权限,访问受保护的数据, 等已经引入了各种缓解措施来防止此类 动作和管理程序也被使用,除了他们的 为实现这一目标而使用传统的虚拟化支持。在里面 ARM 虚拟化促进了 Android 生态系统 扩展,允许供应商/OEM 实施自己的保护 功能/逻辑。 另一方面,Android 设备已普遍成为主要的 PITA 由于引入的 OEM 和供应商种类繁多,
内核稳定性问题复杂多样,最常见的莫过于“kernel panic”,意为“内核恐慌,不知所措”。这种情况下系统自然无法正常运转,只能自我结束生命,留下死亡信息。诸如:
在我们的最小实现中,我们不会启用 IRQ 或 FIQ。 此外,我们不会实施任何 EL0 应用程序或执行 `svc` 从我们的内核调用,结果所有 VBAR_EL1 条目都设置为 导致系统挂起(无限循环)。同样,对于 EL3,我们只期望 来自较低级别 AArch64 模式的同步异常。结果只有 相应的“vectors_el3”条目(+0x400)已设置,所有其他条目都会导致 系统挂起与 EL1 向量一样。异常处理程序保存当前 处理器状态(通用和状态寄存器)并调用 第二阶段处理程序。我们遵循`smc`调用约定[05
Exception levels ARMv8-A系列定义了一系列的异常等级,从EL0到EL3,下面具体说明其含义:
ARMv8是ARM重点发展的一个架构。有一些年头了!我们来了解下! 本文介绍了ARMv8-a中的一些概念! 从ARMv7开始,ARM公司面向三个市场:应用、实时、控制,分别推出A、R、M系列处理器。A
X0~30 for 64 bit W0~30 for 32 bit Also available V0~31,SIMD floating point registers
指令集架构(Instruction Set Architecture, ISA)是CPU和软件之间的桥梁,包含指令集、特权级、寄存器、执行模式、安全扩展、性能加速扩展等诸多方面。
本文主要介绍 Armv8/v9 指令集架构中常用部分,详细的还是要看 Arm architecture reference manual.
本文介绍了AAR64内存管理中最重要的内容--内存转换,解释了虚拟地址是如何翻译为物理地址的,翻译表的格式,以及如何管理TLBS。
本文描述了Armv8-A AArch64的虚拟化支持。包括stage 2页表转换,虚拟异常,以及陷阱。本文介绍了一些基础的硬件辅助虚拟化理论以及一些Hypervisor如何利用这些虚拟化特性的例子。文本不会讲述某一具体的Hypervisor软件是如何工作的以及如何开发一款Hypervisor软件。通过阅读本文,你可以学到两种类型的Hypervisor以及它们是如何映射到Arm的异常级别。你将能解释陷阱是如何工作的以及其是如何被用来进行各种模拟操作。你将能描述Hypervisor可以产生什么虚拟异常以及产生这些虚拟异常的机制。理解本文内容需要一定基础,本文假定你熟悉ARMv8体系结构的异常模型和内存管理。
一个安全或可信的操作系统保护着系统中敏感的信息,例如,可以保护用户存储的密码,信用卡等认证信息免受攻击。
MMU概念介绍 MMU分为两个部分: TLB maintenance 和 address translation MMU的作用,主要是完成地址的翻译,无论是main-memory地址(DDR地址),还是IO地址(设备device地址),在开启了MMU的系统中,CPU发起的指令读取、数据读写都是虚拟地址,在ARM Core内部,会先经过MMU将该虚拟地址自动转换成物理地址,然后在将物理地址发送到AXI总线上,完成真正的物理内存、物理设备的读写访问。 下图是一个linux kernel系统中宏观的虚拟地址到物
这篇文章基于Russell King所写的《the ARM booting document》,并与AArch64 Linux kernel的所有公开版本相关。
Zircon 是 Google 新操作系统 Fuchsia 的内核,基于 LK - Little Kernel 演变而来。而 Little Kernel 前面一直作为 Android 系统的 Bootloader 的核心而存在。Zircon 在此基础上增加了 MMU,System Call 等功能。
ARMv8架构,引入了Execution State、Exception Level、Security State等新特性,是目前ARM架构变动最大的一次,具体来说: 1,A64:对于Large memory的需求也可通过Large Physical Address Extensions (LPAE) 技术,虽然可以支持高达40bits的物理地址空间,但受限于32-bit的指令集,虚拟地址空间依旧只有32bits(4G),定义64-bit的指令集(A64)。向前兼容32-bit指令集(A32和T32)。 2,安全:在ARMv7 security extension的基础上,兼容TrustZone架构,新增security model。它不同于privilege level等软件逻辑上的保护,而是一种物理上的区隔,即不同security状态下,可以访问的物理内存是不同的。在Security状态下,处理器可以访问所有的Secure physical address space以及Non-secure physical address space;在Non-security状态下,只能访问Non-secure physical address space。
综述 本文描述了Armv8-A AArch64的虚拟化支持。包括stage 2页表转换,虚拟异常,以及陷阱。本文介绍了一些基础的硬件辅助虚拟化理论以及一些Hypervisor如何利用这些虚拟化特性的例子。文本不会讲述某一具体的Hypervisor软件是如何工作的以及如何开发一款Hypervisor软件。通过阅读本文,你可以学到两种类型的Hypervisor以及它们是如何映射到Arm的异常级别。你将能解释陷阱是如何工作的以及其是如何被用来进行各种模拟操作。你将能描述Hypervisor可以产生什么虚拟异常以及
本文描述了ARMv8-64的虚拟化支持。讨论主题包括stage-2地址转换、虚拟异常和陷入。
AArch64中,reset不再是异常向量表的一部分,它有专用的配置输入管脚和寄存器。其余的异常存储在异常向量表中。
虚拟化是一种广泛使用的技术,支撑了几乎所有现代云计算和企业基础设施。开发人员基于虚拟化功能可以在单台机器上运行多个操作系统,从而完成软件测试而不会存在破坏主计算环境的风险。虚拟化为芯片和基础设施带来了许多特性,包括良好的隔离性、不同资源的可及性、同一资源的工作负载平衡、隔离保护等。
vmlinux 属于 ELF 文件,要想了解如何启动 vmlinux,首先需要知道 ELF 的格式。
对于研究芯片处理器架构,是件非常有意思的事情。刚开始的接触时候也是一头雾水,不知所云,看着厚厚的架构手册,不知道从哪里下手。比如《ARMv8-A Architecture reference manual》一共是6666页纯英文文档,如果没真正看过,估计一上来就开始打退堂鼓了。后面接触的芯片的体系架构多了,自然也明白很多东西其实是有一些共性的,虽然架构不同,但是指令集、流水线以及系统运行的模式也能猜测7到8分准确。本文主要介绍一下sparc v8体系架构下的异常处理,同时简单的对比一下armv8体系架构的异常。
我们在以前提到过,Intel通过多核技术,推翻了PowerPC,SPARC等大小型机的反动统治,将计算技术带入了一个崭新的时代,并迅速在服务器领域占据统治地位。
在本文中,我们看一下现代计算系统中机密计算的角色,以及实现原理。然后,描述了ARM的机密计算架构(CCA)如何在ARM硬件平台上实现机密计算。
上面说了pin-table的多核启动方式,看似很繁琐,实际上并不复杂,无外乎主处理器唤醒从处理器到指定地址上去执行指令,说他简单是相对于功能来说的,因为他只是实现了从处理器的启动,仅此而已,所以,现在社区几乎很少使用spin-table这种方式,取而代之的是psci,他不仅可以启动从处理器,还可以关闭,挂起等其他核操作,现在基本上arm64平台上使用多核启动方式都是psci。下面我们来揭开他神秘的面纱,其实理解了spin-table的启动方式,psci并不难(说白了也是需要主处理器给从处理器一个启动地址,然后从处理器从这个地址执行指令,实际上比这要复杂的多)。
Armv9-A 架构建立在 Armv8-A 架构的基础上并向前兼容。 Armv9-A 架构构成了 Arm 基础系统架构的基础——该规范概述了一种标准,可确保硬件和固件在系统级的广泛应用中具有兼容性。
本文主要是在ARM架构的不同异常等级上工作的软件之间,提供一个标准的电源管理接口。这些软件,比如Linux、Hypervisor、安全Firmware和可信OS之间必须能够实现互相操作。而这些软件可能由不同厂商提供,本标准就是为这些软件的集成提供便利。
Linux阅码场内核月报栏目,是汇总当月Linux内核社区最重要的一线开发动态,方便读者们更容易跟踪Linux内核的最前沿发展动向。
当设备正在愉快的执行时候,此时发生了一个异常,处理器就必须暂停当前的任务,转而去处理发生的异常。当异常处理完毕后,处理就会发回到被打断的程序继续执行。
在做rt-thread系统移植的这段时间里,积累一些快速移植的经验,不论是现有架构的不同型号的芯片,还是一个全新架构的移植,只需要按照一定的步骤进行,一般大的方向不会出错。剩下的事情就是解决为什么没有达到预期效果的问题。
为了清楚地表达每个ARM应用实例所使用的指令集,ARM公司定义了8种主要的ARM指令集体系结构版本,以版本号V1~V8表示。
老样子,为了赚点积分下载其它人的文件,下载以上资料须要资源分2分。 假设没有积分请留言全部文档,留下邮箱就可以。
一颗芯片最主要的就是CPU核了,处理CPU Core之外,还存在很多其他IP,包括Graphical、Multimedia、Memory Controller、USB Controller等等。
今天带大家了解下NULL指针是如何形成的? 当然了我们要深入到操作系统中去看看为何访问一个NULL指令会报Segment Fault的错误。
在ARMv8中首次引入了Exception Level的概念,每个Exception Level代表了不同的特权级别。当然了ARMv7也存在同样的特权级别,只不过名字是用PL定义的。
ARM架构中,EL0/EL1是必须实现,EL2/EL3是选配,ELx跟层级对应关系:
risc-v的架构有着非常鲜明的特点,如果看过arm,aarch64,mips等架构的一些架构手册的基础知识,再看risc-v的芯片的架构设计,就会觉得非常有意思,可以找到一些影子,但是又比这些架构设计简洁的多。当我看完aarch64的芯片手册,再看risc-v的boot时,设计思想竟然可以做一些对比,同样去看risc-v和mips的寄存器,也可看到高度的一致性。对于x86的架构我未曾深入了解,但是在risc-v上应该也可以找到一些设计元素。总体说来,risc-v的架构设计集合了各种架构的设计的优点。我突然觉得这种堆叠即模块的设计思想,在当前iot物联网发展的如火如荼的时代又要被赋予最新的使命了。我十分看好risc-v的设计思想,也期待着与软件界的Linux一样,发展的繁荣昌盛。
本来本节是要学习内核启动的第一个进程的建立,也就是0号进程,也称idle进程,也称swapper进程。但是在学习第一个进程建立之前需要先学习threadinfo和内核栈的关系。
secure boot是指确保在一个平台上运行的程序的完整性的过程或机制。secure boot会在固件和应用程序之间建立一种信任关系。在启用secure boot功能后,未经签名的固件或程序将不能运行在该设备上。
lds文件可以看出,程序入口函数为_start,下面从_start 开始分析start.s文件中有用的部分。
从技术角度来说,一讲到TEE就会提到TrustZone,这是因为虽然TEE OS实现有多种多样,主芯片厂商也有好几种,但是大部分都是基于Arm的TrustZone架构。
Arm的TrustZone技术为可信软件提供了系统级的硬件隔离。TrustZone技术可以被移植到任何一个Arm Cortex-A核上。它同时支持最新的Cortex-M23 和 Cortex-M33,
通过《Linux进程的内存管理之malloc和mmap》我们知道,这两个函数只是建立了进程的vma,但还没有建立虚拟地址和物理地址的映射关系。
工作中遇到的多核 ARM CPU 越来越多,总结分享一些多核启动的知识,希望能帮助更多小伙伴。 在 ARM64 架构下如果想要启动多核,有 spin-table 和 psci 两种方式,下面针对这两种启动流程进行分析。 代码版本 boot-wrapper-aarch64 version : 28932c41e14d730b8b9a7310071384178611fb32 linux v5.14 多核 CPU 的启动方式 嵌入式系统的启动的基本流程是先运行 bootloader ,然后由 bootloade
最近用华为鲲鹏跑了一段时间服务后,出现了系统负载40多居高不下的情况,一排查发现是kworker进程占用CPU很高,而且还杀不掉。
编译 Libvirt 源码 并 创建yum源 参考之前发布的文章 编译 Libvirt 源码 并 创建yum源
Arm64的centos版本自7.5.1804以后不再和7.4、7.3、7.2等之前的一样直接提供一个rootfs.tar.xz的压缩包,全部变成了ISO的安装文件,因此需要EFI来引导安装,如果Aarch64的cpu用的是uboot就只有干瞪眼了,笔者花了一翻功夫,终于找到如何从ISO中提取出centos 7.5.1804文件系统的方法,方便使用uboot的用户可以使用centos7.5.1804。
为了更广泛地向企业领域推进,需要引入 64 位构架。同时也需要在 ARMv8 架构中引入新的 AArch64 执行状态。AArch64 不是一个单纯的 32 位 ARM 构架扩展,而是 ARMv8 内全新的构架,完全使用全新的 A64 指令集。这些都源自于多年对现代构架设计的深入研究。更重要的是, AArch64 作为一个分离出的执行状态,意味着一些未来的处理器可能不支持旧的 AArch32 执行状态。 虽然最初的 64 位 ARM 处理器将会完全向后兼容,但我们大胆且前瞻性地将 AArch64 作为在 ARMv8 处理器中唯一的执行状态。我们在这些系统中将不支持 32 位执行状态, 这将使许多有益的实现得到权衡,如默认情况下,使用一个较大的 64K 大小的页面,并会使得纯净的 64 位 ARM 服务器系统不受遗留代码的影响。立即进行这种划分是很重要的,因为有可能在未来几年内将出现仅支持 64 位的服务器系统。没有必要在新的 64 位架构中去实现一个完整的 32 位流水线,这将会提高未来 ARM 服务器系统的能效。这样回想起来, AArch64 作为在 Fedora ARM 项目中被支持的 ARM 构架是一个很自然的过程: armv5tel、armv7hl、aarch64。新的架构被命名为:aarch64,这同 ARM 自己选择的主线命名方式保持一致,同时也考虑到了 ARM 架构名与 ARM 商标分开的期望。
timer就像是系统的脉搏,重要性不言而喻。ARMv8架构处理器提供了一个Generic Timer,与GIC类似,Generic Timer在硬件上也支持了虚拟化,减少了软件模拟带来的overhead。
领取专属 10元无门槛券
手把手带您无忧上云