首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从DataFrame中删除列

在操作数据的时候,DataFrame对象中删除一个或多个列是常见的操作,并且实现方法较多,然而这中间有很多细节值得关注。...如果这些对你来说都不是很清楚,建议参阅《跟老齐学Python:数据分析》中对此的详细说明。 另外的方法 除了上面演示的方法之外,还有别的方法可以删除列。...我们知道,如果用类似df.b这样访问属性的形式,也能得到DataFrame对象的列,虽然这种方法我不是很提倡使用,但很多数据科学的民工都这么干。...因此,如果要让f.d与f['d']等效,还必须要在StupidFrame类中添加 __getattr__ 方法,并使用__setattr__方法来处理设置问题(关于这两个方法的使用,请参阅《Python...当然,并不是说DataFrame对象的类就是上面那样的,而是用上面的方式简要说明了一下原因。 所以,在Pandas中要删除DataFrame的列,最好是用对象的drop方法。

7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python 数据处理 合并二维数组和 DataFrame 中特定列的值

    pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...values_array = df[["label"]].values 这行代码从 DataFrame df 中提取 “label” 列,并将其转换为 NumPy 数组。....结果是一个新的 NumPy 数组 arr,它将原始 DataFrame 中 “label” 列的值作为最后一列附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。

    15700

    用过Excel,就会获取pandas数据框架中的值、行和列

    在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...图5 获取多列 方括号表示法使获得多列变得容易。语法类似,但我们将字符串列表传递到方括号中。...请注意双方括号: dataframe[[列名1,列名2,列名3,…]] 图6 使用pandas获取行 可以使用.loc[]获取行。请注意此处是方括号,而不是圆括号()。...记住这种表示法的一个更简单的方法是:df[列名]提供一列,然后添加另一个[行索引]将提供该列中的特定项。 假设我们想获取第2行Mary Jane所在的城市。

    19.2K60

    python读取txt中的一列称为_python读取txt文件并取其某一列数据的示例

    python读取txt文件并取其某一列数据的示例 菜鸟笔记 首先读取的txt文件如下: AAAAF110 0003E818 0003E1FC 0003E770 0003FFFC 90 AAAAF110...’] [‘0003E208’] [‘0003E204’] [‘0003E208’] [‘0003E1FC’] 以上这篇python读取txt文件并取其某一列数据的示例就是小编分享给大家的全部内容了,希望能给大家一个参考...关键字with在不再需要访问文件后将其关闭 要让python打开不与程序文件位于同一目录中的文件,需要提供文件的路径,它让python到系统指定的位置去查找....,而且是使用的train而不是fit进行训练的,看过源码fit才有evals_result_这个,导致训练后没有这个,但是又想获取学习曲线,因此肯定还需要获取训练数据......xml 文件 .excel文件数据,并将数据类型转换为需要的类型,添加到list中详解 1.读取文本文件数据(.txt结尾的文件)或日志文件(.log结尾的文件) 以下是文件中的内容,文件名为data.txt

    5.2K20

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行的值 (2)读取第二列的值 (3)同时读取某行某列 (4)读取DataFrame的某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...= data.loc[ 1, "B"] 结果: (4)读取DataFrame的某个区域 # 读取第1行到第3行,第B列到第D列这个区域内的值 data4 = data.loc[ 1:...3, 2:4]中的第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    10K21

    问与答63: 如何获取一列数据中重复次数最多的数据?

    学习Excel技术,关注微信公众号: excelperfect Q:如下图1所示,在工作表列A中有很多数据(为方便表述,示例中只放置了9个数据),这些数据中有很多重复数据,我想得到重复次数最多的数据是那个...,示例中可以看出是“完美Excel”重复的次数最多,如何获得这个数据?...在上面的公式中: MATCH($A$1:$A$9,$A$1:$A$9,0) 在单元格区域A1:A9中依次分别查找A1至A9单元格中的数据,得到这些数据第1次出现时所在的行号,从而形成一个由该区域所有数据第一次出现的行号组组成的数字数组...MODE函数从上面的数组中得到出现最多的1个数字,也就是重复次数最多的数据在单元格区域所在的行。将这个数字作为INDEX函数的参数,得到想应的数据值。...MyRange,那么上述数组公式可写为: =INDEX(MyRange,MODE(MATCH(MyRange,MyRange,0))) 但是,如果单元格区域中有几个数据重复次数相同且都出现次数最多,则上述公式只会获取第

    3.6K20

    Excel应用实践16:搜索工作表指定列范围中的数据并将其复制到另一个工作表中

    学习Excel技术,关注微信公众号: excelperfect 这里的应用场景如下: “在工作表Sheet1中存储着数据,现在想要在该工作表的第O列至第T列中搜索指定的数据,如果发现,则将该数据所在行复制到工作表...用户在一个对话框中输入要搜索的数据值,然后自动将满足前面条件的所有行复制到工作表Sheet2中。” 首先,使用用户窗体设计输入对话框,如下图1所示。 ?...GoTo SendInfo End If '清空工作表Sheet2 Sheets("Sheet2").Cells.Clear '获取数据单元格所在的行并复制到工作表...函数代码如下: '自定义函数 '获取满足条件的所有单元格 Function FindAll(SearchRange AsRange, _ FindWhat As Variant...End If Loop End If Set FindAll = ResultRange End Function 这是一个通用函数,直接拿来使用就行了,可用来在指定的区域查找并返回满足条件的所有单元格

    6.1K20

    Excel公式练习35: 拆分连字符分隔的数字并放置在同一列中

    本次的练习是:在单元格区域A1:A6中,有一些数据,有的是单独的数字,有的是由连字符分隔的一组数字,例如13-16表示13、14、15、16,现在需要将这些数据拆分并依次放置在列D中,如下图1所示。...实际上,这个值代表我们从A1:A6的各字符串中范围最大的字符串返回的数字数量。...:首先生成一个单列数组,该数组由0至3(即数值范围的最大间隔)组成,然后将其转置为单行数组{0,1,2,3}。...其实,之所以生成4列数组,是为了确保能够添加足够数量的整数,因为A1:A6中最大的间隔范围就是4个整数。...要去除不需要的数值,只需将上面数组中的每个值与last生成的数组相比较,(last数组生成的值为A1:A6中每个数值范围的上限)。

    3.7K10

    动态数组公式:动态获取某列中首次出现#NA值之前一行的数据

    标签:动态数组 如下图1所示,在数据中有些为值错误#N/A数据,如果想要获取第一个出现#N/A数据的行上方行的数据(图中红色数据,即图2所示的数据),如何使用公式解决?...图1 图2 如示例图2所示,可以在单元格G2中输入公式: =LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA(x),0...如果想要只获取第5列#N/A值上方的数据,则将公式稍作修改为: =INDEX(LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA...,那么上述公式会自动更新为最新获取的值。...自从Microsoft推出动态数组函数后,很多求解复杂问题的公式都得到的简化,很多看似无法用公式解决的问题也很容易用公式来实现了。

    15210

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    请按照以下链接下载数据,并将其放在与存储Python文件的同一文件夹中。...可以用工作表的名字,或一个整数值来当作工作表的index。 ? 4、使用工作表中的列作为索引 除非明确提到,否则索引列会添加到DataFrame中,默认情况下从0开始。...6、筛选多种数值 ? 7、用列表筛选多种数值 ? 8、筛选不在列表或Excel中的值 ? 9、用多个条件筛选多列数据 输入应为列一个表,此方法相当于excel中的高级过滤器功能: ?...11、在Excel中复制自定义的筛选器 ? 12、合并两个过滤器的计算结果 ? 13、包含Excel中的功能 ? 14、从DataFrame获取特定的值 ?...有四种合并选项: left——使用左侧DataFrame中的共享列并匹配右侧DataFrame,N/A为NaN; right——使用右侧DataFrame中的共享列并匹配左侧DataFrame,N/A为

    8.4K30

    解决pandas.core.frame.DataFrame格式数据与numpy.ndarray格式数据不一致导致无法运算问题

    问题描述在pandas的DataFrame格式数据中,每一列可以是不同的数据类型,如数值型、字符串型、日期型等。而ndarray格式数据需要每个元素都是相同类型的,通常为数值型。...= series_a + 1上述代码中,我们创建了一个新的变量​​series_a​​,将列A转换为ndarray并使用pd.Series()将其转换为pandas的Series数据格式。...通过将DataFrame的某一列转换为ndarray,并使用pd.Series()将其转换为pandas的Series数据格式,可以避免格式不一致的错误。...上述代码中,我们将DataFrame的​​Quantity​​列和​​Unit Price​​列转换为ndarray并分别赋值给​​quantity_values​​和​​unit_price_values​​...然后,我们可以直接对这两个ndarray进行运算,得到每个产品的销售总额。最后,将运算结果添加到DataFrame中的​​Sales Total​​列。

    53420

    Excel公式练习44: 从多列中返回唯一且按字母顺序排列的列表

    本次的练习是:如下图1所示,单元格区域A2:E5中包含一系列值和空单元格,其中有重复值,要求从该单元格区域中生成按字母顺序排列的不重复值列表,如图1中G列所示。 ?...在单元格H1中的公式比较直接,是一个获取列表区域唯一值数量的标准公式: =SUMPRODUCT((Range1"")/COUNTIF(Range1,Range1&"")) 转换为: =SUMPRODUCT...在单元格G1的主公式中: =IF(ROWS($1:1)>$H$1,"", 如果公式向下拖拉的行数超过单元格H1中的数值6,则返回空值。 3....然而,在原理上该技术是相同的:首先将二维区域转换成一维区域,然后应用通用的结构来获取我们想要的结果。...唯一不同的是,Range1包含一个4行5列的二维数组,而Arry4是通过简单地将Range1中的每个元素进行索引而得出的,实际上是20行1列的一维区域。

    4.2K31

    【精心解读】用pandas处理大数据——节省90%内存消耗的小贴士

    127个csv文件中,我们已经用csvkit (https://csvkit.readthedocs.io/en/1.0.2/) 将其合并,并添加了表头。...我们用DataFrame.select_dtypes来只选择整型列,然后我们优化这种类型,并比较内存使用量。 我们看到内存用量从7.9兆下降到1.5兆,降幅达80%。...我们再创建一个原始dataframe的副本,将其数值列赋值为优化后的类型,再看看内存用量的整体优化效果。 可以看到通过我们显著缩减数值型列的内存用量,我们的dataframe的整体内存用量减少了7%。...你可以看到这些字符串的大小在pandas的series中与在Python的单独字符串中是一样的。...本例的亮点是内存用量从752.72兆降为51.667兆,降幅达93%。我们将其与我们dataframe的剩下部分合并,看看初始的861兆数据降到了多少。 耶,看来我们的进展还不错!

    8.7K50

    python数据分析——数据预处理

    对于分类变量,我们可以使用独热编码(One-Hot Encoding)将其转换为数值型数据。 数据特征工程则是为了从原始数据中提取出更多有用的信息,以提高模型的性能。...它的参数如下: x:表示用于插值的数据点的 x 坐标。可以是一个单独的数值或一个数组。 y:表示用于插值的数据点的 y 坐标。可以是一个单独的数值或一个数组。...例如,将字符串类型转换为数值类型时,如果字符串中包含非数值字符,则自动将其填充为NaN。...可以是单个列名的字符串,也可以是列名列表。 drop:指示是否在新索引中保留原有的列。默认为True,表示将原有的列从DataFrame中删除。 append:指示是否将新的索引添加到原有的索引之后。...示例 【例】请创建如下所示的DataFrame数据,并利用Python对该数据的最后增加一列数据,要求数据的列索引为'four' ,数值为[9,10,24]。

    5100

    可自动构造机器学习特征的Python库

    特征工程基本概念 特征工程意味着从现有的数据中构造额外特征,这些特征通常分布在多张相关的表中。特征工程需要从数据中提取相关信息并将其存入单张表格中,然后被用来训练机器学习模型。...,同时将其添加到实体集的语法与 clients 一样。...,因为它只能取 2 个离散的数值,所以在特征工具中,将其看成一个分类变量。...一个例子就是根据 client_id 对 loan 表分组并找到每个客户的最大贷款额。 转换:对一张表中一或多列完成的操作。一个例子就是取一张表中两列之间的差值或者取一列的绝对值。...深度特征合成可以依次叠加特征基元:「聚合」,它们在多张表间的一对多关联中起作用,以及「转换」,是应用于单张表中一或多列以从多张表中构造新的特征的函数。

    1.9K30
    领券