首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python 全方位访问DataFrame格式数据

本文链接:https://blog.csdn.net/weixin_44580977/article/details/102012895 1.行/列索引访问 在pandas中DataFrame.index...可以访问DataFrame全部的行索引,DataFrame.columns可以访问DataFrame全部的列索引 我们用DataFrame.axes查看交易数据行和列的轴标签基本信息,DataFrame.axes...某列内容访问可以通过类似字典标记或属性的方式,比如DataFrame[‘Open’]或是DataFrame.Open方式,返回得到的’Open’列元素其实是Series数据结构(类似数组) 某行内容可以用切片式访问...,比如访问从索引0开始的第一行元素,我们使用DataFrame[0:1]方式,返回得到的元素是DataFrame数据结构 3.元素级的访问 元素级访问有三种: loc是通过标签方式选取数据,iloc是通过位置方式选取数据...例如:DataFrame.loc[‘2018-01-02’,[‘High’,‘Low’]]选取了’2018-01-02’行对应的’High’,'Low’这两列的元素内容 iloc的选取规则 通过行和列位置组合的方式来选择数据

1.2K20

Hadoop 中的 ACL(访问控制列表)机制是如何实现的?它对数据安全性有何保障?

在 Hadoop 中,ACL(访问控制列表)机制用于控制用户对文件和目录的访问权限。...Hadoop 的 ACL 机制通过扩展传统的 Unix 文件权限模型,提供了更细粒度的访问控制,从而增强了数据的安全性。以下是 Hadoop 中 ACL 机制的实现和对数据安全性的保障:1....ACL 的实现启用 ACL:要启用 Hadoop 中的 ACL 功能,需要在 hdfs-site.xml 配置文件中设置以下参数: dfs.namenode.acls.enabled...ACL 对数据安全性的保障细粒度访问控制:ACL 允许为特定用户或组设置独立的权限,从而实现更细粒度的访问控制。这有助于防止未经授权的用户访问敏感数据。...审计和监控:通过日志记录和监控工具,可以跟踪和审计 ACL 的变更历史,确保数据访问的透明性和可追溯性。4.

10010
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    上手Pandas,带你玩转数据(1)-- 实例详解pandas数据结构

    Series 创建序列 访问序列 DataFrame 创建DataFrame 访问DataFrame 列处理 行处理 panel 创建Panel 从panel中选择数据 基本方法速查 Series...,从创始人的角度我们可以直接理解pandas这个python的数据分析库的主要特性和发展方向。...1.对表格类型的数据的读取和输出速度非常快。(个人对比excel和pandas,的确pandas不会死机....)在他的演示中,我们可以看到读取489597行,6列的数据只要0.9s。...---- 从标量创建一个序列: s = pd.Series(5, index=[0, 1, 2, 3]) 0 5 1 5 2 5 3 5 dtype: int64 ---- 访问序列 从位置序列访问数据...---- 创建DataFrame 创建一个空的DataFrame:df = pd.DataFrame() ---- 从列表中创建一个DataFrame: data = [1,2,3,4,5] df =

    6.7K30

    一文介绍Pandas中的9种数据访问方式

    导读 Pandas之于日常数据分析工作的重要地位不言而喻,而灵活的数据访问则是其中的一个重要环节。本文旨在讲清Pandas中的9种数据访问方式,包括范围读取和条件查询等。 ?...Pandas中的核心数据结构是DataFrame,所以在讲解数据访问前有必要充分认清和深刻理解DataFrame这种数据结构。...以下面经典的titanic数据集为例,可以从两个方面特性来认识DataFrame: ? DataFrame是一个行列均由多个Series组成的二维数据表框,其中Series可看做是一个一维向量。...而每个dict内部则是一个以各行索引为key的子dict。...4. isin,条件范围查询,一般是对某一列判断其取值是否在某个可迭代的集合中。即根据特定列值是否存在于指定列表返回相应的结果。 5. where,妥妥的Pandas仿照SQL中实现的算子命名。

    3.8K30

    Excel公式技巧20: 从列表中返回满足多个条件的数据

    在实际工作中,我们经常需要从某列返回数据,该数据对应于另一列满足一个或多个条件的数据中的最大值。 如下图1所示,需要返回指定序号(列A)的最新版本(列B)对应的日期(列C)。 ?...IF子句,不仅在生成参数lookup_value的值的构造中,也在生成参数lookup_array的值的构造中。...原因是与条件对应的最大值不是在B2:B10中,而是针对不同的序号。而且,如果该情况发生在希望返回的值之前行中,则MATCH函数显然不会返回我们想要的值。...(即我们关注的值)为求倒数之后数组中的最小值。...由于数组中的最小值为0.2,在数组中的第7个位置,因此上述公式构造的结果为: {0;0;0;0;0;0;1;0;0;0} 获得此数组后,我们只需要从列C中与该数组出现的非零条目(即1)相对应的位置返回数据即可

    9.4K10

    我的Python分析成长之路9

    pandas入门 统计分析是数据分析的重要组成部分,它几乎贯穿整个数据分析的流程。运用统计方法,将定量与定性结合,进行的研究活动叫做统计分析。而pandas是统计分析的重要库。...1.pandas数据结构     在pandas中,有两个常用的数据结构:Series和Dataframe  为大多数应用提供了一个有效、易用的基础。     ...最常用的就是利用包含等长度的列表或numpy数据的字典来形成DataFrame ? ?...loc使用方法:DataFrame.loc[行索引名称或条件,列索引名称,如果内部传递的是一个区间,则左闭右开。...loc内部可以出入表达式,返回布尔值的series       iloc和loc的区别是,iloc接受的必须是行索引和列索引的位置。

    2.1K11

    python 数据分析基础 day15-pandas数据框的使用获取方式1:使用DataFrame.loc

    今天是读《pyhton数据分析基础》的第15天,今天读书笔记的内容为使用pandas模块的数据框类型。 数据框(DataFrame)类型其实就是带标题的列表。...很多时候,整个数据框的数据并不会一次性的用于某一部的分析,而是选用某一列或几列的数据进行分析,此时就需要获取数据框的部分数据。...获取方式如下: 获取方式1:使用DataFrame.loc[] #调用某两行两列交汇的数据 #[index1,index2]表示引用索引号为index1和index2的两行数据 #[colName1,colName2...]表示引用列标题为colName1和colName2的列数据 DataFrame.loc[[index1,index2],[colName1,colName2]] 获取方式2:使用DataFrame.iloc...[] #调用某两行两列交汇的数据 #索引号从0开始算,若为连续的行数,则算头不算尾 #以下行代码所选取的数据相同 #1:3、[1,2]表示行索引号,选取第二行和第三行 #3:5、[3,4]表示列索引号,

    1.8K110

    Pandas 学习手册中文第二版:1~5

    pandas 从统计编程语言 R 中带给 Python 许多好处,特别是数据帧对象和 R 包(例如plyr和reshape2),并将它们放置在一个可在内部使用的 Python 库中。...这些列是数据帧中包含的新Series对象,具有从原始Series对象复制的值。 可以使用带有列名或列名列表的数组索引器[]访问DataFrame对象中的列。...将列表传递给DataFrame的[]运算符将检索指定的列,而Series将返回行。 如果列名没有空格,则可以使用属性样式进行访问: 数据帧中各列之间的算术运算与多个Series上的算术运算相同。...将文件中的数据加载到数据帧中 Pandas 库提供了方便地从各种数据源中检索数据作为 Pandas 对象的工具。 作为一个简单的例子,让我们研究一下 Pandas 以 CSV 格式加载数据的能力。...访问数据帧内的数据 数据帧由行和列组成,并具有从特定行和列中选择数据的结构。 这些选择使用与Series相同的运算符,包括[],.loc[]和.iloc[]。

    8.4K10

    Python数据分析实战(2)使用Pandas进行数据分析

    文章目录 一、Pandas的使用 1.Pandas介绍 group_by()的使用 2.使用Pandas进行College数据分析 二、鸢尾花数据集分析 1.基础操作 2.数据分析 三、电影评分数据分析...一、Pandas的使用 1.Pandas介绍 Pandas的主要应用包括: 数据读取 数据集成 透视表 数据聚合与分组运算 分段统计 数据可视化 对电影数据的分析: 平均分较高的电影 不同性别对电影平均评分...一般在jupyter的一个cell中只默认输出最后一行的变量,要想前面行的数据,需要调用print()方法; 其中,.iloc只按整数位置进行选择,其工作方式与Python列表类似,.loc只通过索引标签进行选择...其中,college[10:20:2]是对数据进行逐行读取,从第11行开始到21行,每隔一行读取一行数据。...由上处数据处理和分析的过程中可以看到,在数据处理过程中,合并、透视、分组、排序这四大类操作是最经常用的,需要熟练掌握。

    4.1K30

    高效的10个Pandas函数,你都用过吗?

    还有一些函数出现的频率没那么高,但它们同样是分析数据的得力帮手。 介绍这些函数之前,第一步先要导入pandas和numpy。...Sample Sample用于从DataFrame中随机选取若干个行或列。...:随机数发生器种子 axis:选择抽取数据的行还是列 axis=0:抽取行 axis=1:抽取列 比如要从df中随机抽取5行: sample1 = df.sample(n=5) sample1 从...用法: DataFrame.loc[] 或者 DataFrame.iloc[] loc:按标签(column和index)选择行和列 iloc:按索引位置选择行和列 选择df第1~3行、第1~2列的数据...) 参数作用: frame:它是指DataFrame id_vars [元组, 列表或ndarray, 可选]:不需要被转换的列名,引用用作标识符变量的列 value_vars [元组, 列表或ndarray

    4.3K20

    且用且珍惜:Pandas中的这些函数属性将被deprecated

    即Pandas内部编码为了标记deprecated相关信息,部分变量名包含了deprecated字样,例如: 弃用的函数/方法,表明某函数/方法整体已遭弃用,使用者调用该函数/方法时,直接触发相关warning...01 lookup函数 Pandas作为一款定位于数据分析与处理的工具库,所以在其API方面常能看到一些其他工具的影子:例如类似SQL的join函数,类似Excel中的lookup函数等。...类似于Python中列表的append函数,Pandas中的append函数是用于在现有对象的尾部追加新的元素,既可以是对Series追加Series,也可以是在DataFrame后面追加DataFrame...但同时,也与Python中列表的append函数大为不同的是: 列表中的append是inplace型的方法,即对当前对象直接追加,而返回加过为None; Pandas中的append则是不改变调用者本身...,而返回一个新的追加后的对象 举个例子: ## 列表中append a = [1, 2] a.append(3) # 不输出任何结果 print(a) # [1, 2, 3] ## Pandas中的append

    1.6K20

    从0开始构建一个Oauth2Server服务 访问 OAuth 服务器中的数据

    本节中我们将介绍如何在现有的 OAuth 2.0 服务器上访问您的数据。对于此示例,我们将使用 GitHub API 并构建一个简单的应用程序,该应用程序将列出登录用户创建的所有存储库。...在命令行中,go run main.go从该文件夹内运行,您将能够在浏览器中访问http://localhost:8080以运行您的代码。以下示例中的所有代码都应添加到此main.go文件中。...("application/json"): 配置响应的数据格式 如果一切正常,GitHub 会生成一个访问令牌并在响应中返回它。...我们将访问令牌存储在会话中并重定向到主页,用户已登录。 GitHub 的响应如下所示。.../user accessToken: 上一步获取到的参数 data 就是我们获取到的数据, 在本代码中就是一个 response.Body []byte类型数据 要想代码正常运行需要在文件顶部导入包:

    16230

    精通 Pandas 探索性分析:1~4 全

    pandas 将 Excel 文件中的数据转换为 Pandas 数据帧。 Pandas 内部为此使用 Excel rd库。...在这里,Pandas 已读取数据并在内存中创建了表格数据对象,我们可以在我们的代码中访问,浏览和操作,如以下代码所示: df = pd.read_excel('IMDB.xlsx') df.head()...二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色.../img/80f5fbde-9419-48fe-8538-2d04b5aad7a9.png)] 从 Pandas 数据帧中选择多个行和列 在本节中,我们将学习更多有关从读取到 Pandas 的数据集中选择多个行和列的方法的信息...从 Pandas 数据帧中删除列 在本节中,我们将研究如何从 Pandas 的数据集中删除列或行。 我们将详细了解drop()方法及其参数的功能。

    28.3K10

    Python面试十问2

    一、如何使用列表创建⼀个DataFrame # 导入pandas库 import pandas as pd # 创建一个列表,其中包含数据 data = [['A', 1], ['B', 2], ['...C', 3]] # 使用pandas的DataFrame()函数将列表转换为DataFrame df = pd.DataFrame(data, columns=['Letter', 'Number']...五、pandas中的索引操作 pandas⽀持四种类型的多轴索引,它们是: Dataframe.[ ] 此函数称为索引运算符 Dataframe.loc[ ] : 此函数⽤于标签 Dataframe.iloc...七、apply() 函数使用方法 如果需要将函数应⽤到DataFrame中的每个数据元素,可以使⽤ apply() 函数以便将函数应⽤于给定dataframe中的每⼀⾏。...十、数据透视表应用 透视表是⼀种可以对数据动态排布并且分类汇总的表格格式,在pandas中它被称作pivot_table。

    12210

    Pandas系列 - 基本数据结构

    从面板中选择数据 系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组。...数据帧(DataFrame)的功能特点: 潜在的列是不同的类型 大小可变 标记轴(行和列) 可以对行和列执行算术运算 构造函数: pandas.DataFrame(data, index, columns...创建DataFrame Pandas数据帧(DataFrame)可以使用各种输入创建 列表 字典 系列(Series) Numpy ndarrays 另一个数据帧(DataFrame) 列表 import...() 面板(Panel)是3D容器的数据 3轴(axis)这个名称旨在给出描述涉及面板数据的操作的一些语义 轴 details items axis 0,每个项目对应于内部包含的数据帧(DataFrame...) major_axis axis 1,它是每个数据帧(DataFrame)的索引(行) minor_axis axis 2,它是每个数据帧(DataFrame)的列 pandas.Panel(data

    5.2K20

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    53230

    Pandas 秘籍:1~5

    一、Pandas 基础 在本章中,我们将介绍以下内容: 剖析数据帧的结构 访问主要的数据帧组件 了解数据类型 选择单列数据作为序列 调用序列方法 与运算符一起使用序列 将序列方法链接在一起 使索引有意义...另见 Pandas read_csv函数的官方文档 访问主要的数据帧组件 可以直接从数据帧访问三个数据帧组件(索引,列和数据)中的每一个。...当数据帧是所需的输出时,只需将列名放在一个单元素列表中。 更多 在索引运算符内部传递长列表可能会导致可读性问题。 为了解决这个问题,您可以先将所有列名保存到列表变量中。...对于所有数据帧,列值始终是一种数据类型。 关系数据库也是如此。 总体而言,数据帧可能由具有不同数据类型的列组成。 在内部,Pandas 将相同数据类型的列一起存储在块中。...Pandas 还有 NumPy 中不提供的其他分类数据类型。 当转换为category时,Pandas 内部会创建从整数到每个唯一字符串值的映射。 因此,每个字符串仅需要在内存中保留一次。

    37.7K10

    Pandas 秘籍:6~11

    一种技巧是使用pd.Categorical从每个演员/导演姓名中创建一个分类数据类型。 分类数据类型具有从每个值到整数的内部映射。 在codes属性中可以找到该整数,该属性用作唯一 ID。...让我们从原始的names数据帧开始,并尝试追加一行。append的第一个参数必须是另一个数据帧,序列,字典或它们的列表,但不能是步骤 2 中的列表。...在内部,pandas 将序列列表转换为单个数据帧,然后进行追加。 将多个数据帧连接在一起 通用的concat函数可将两个或多个数据帧(或序列)垂直和水平连接在一起。...只有在 1.5 版(2015 年发布)中,matplotlib 才开始接受来自 Pandas 数据帧的数据。 在此之前,必须将数据从 NumPy 数组或 Python 列表传递给它。...所有 Pandas 绘图均由 matplotlib 内部处理,并通过数据帧或序列的plot方法公开访问。 我们说 Pandasplot方法是围绕 matplotlib 的包装器。

    34.1K10

    直观地解释和可视化每个复杂的DataFrame操作

    大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。...操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...Melt Melt可以被认为是“不可透视的”,因为它将基于矩阵的数据(具有二维)转换为基于列表的数据(列表示值,行表示唯一的数据点),而枢轴则相反。...默认情况下,合并功能执行内部联接:如果每个DataFrame的键名均未列在另一个键中,则该键不包含在合并的DataFrame中。...记住:合并数据帧就像在水平行驶时合并车道一样。想象一下,每一列都是高速公路上的一条车道。为了合并,它们必须水平合并。

    13.4K20
    领券