例如,如果我们有一个购物记录数据库,其中包括了{'牛奶', '面包', '黄油'},{'面包', '苹果'},{'牛奶', '面包', '啤酒'}等多个事务,FP树将以更紧凑的形式存储这些信息。...例如,考虑下面的事务数据集:
1: {牛奶, 面包, 黄油}
2: {牛奶, 面包}
3: {啤酒, 面包}
相应的FP树将会有如下形态:
root
|
面包:3
|...例如,在上面的FP树中,从“黄油”节点开始逆向回溯到根节点,会得到一个频繁项集{'牛奶', '面包', '黄油'}。...[('面包', 3), ('牛奶', 2), ('牛奶', '面包', 2), ('黄油', '牛奶', '面包', 1), ...]
环境准备
首先,确保你已经安装了Python和PyTorch。...通过深入理解和实践FP-Growth算法,我们可以更有效地从大量数据中提取有用的模式和信息,从而在多个领域内做出更加明智和数据驱动的决策。