首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用 NetworkX + Gephi + Nebula Graph 分析人物关系(上篇)

这样的点集和边集构成一个图网络,这个网络存储在图数据库 Nebula Graph 2中。...Girvan-Newman 算法即是一种基于介数的社区发现算法,其基本思想是根据边介数中心性(edge betweenness)从大到小的顺序不断地将边从网络中移除直到整个网络分解为各个社区。...图中各个节点的重要性可以通过节点的中心性(Centrality)来衡量。在不同的网络中往往采用了不同的中心性定义来描述网络中节点的重要性。...[Gephi 界面] 给划分好的各个社区网络画上不同的颜色: 在外观-节点-颜色-Partition 中选择 community(这里的 community 就是我们刚才为每个点添加的社区编号属性) [...属性) [Gephi 界面] 边的粗细由边的权重属性来决定: 在外观-边-大小-Ranking 中选择边的权重 [Gephi 界面] 导出图片再加个头像效果 [权力的游戏] [权力的游戏] 大功告成,

2.5K20

复杂性思维第二版 二、图

或者你可以表示一个社交网络,每个人是节点,如果他们是朋友,两个人之间有边,否则没有。 在某些图中,边具有长度,成本或权重等属性。例如,在路线图中,边的长度可能代表两个城市之间的距离,或旅行时间。...图也很有用,因为有许多现实世界的问题可以使用图的算法来解决。例如,Dijkstra 的最短路径算法,是从图中找到某个节点到所有其他节点的最短路径的有效方式。路径是两个节点之间的,带有边的节点序列。...Erdős 和 Rényi 研究了这些随机图的属性;其令人惊奇的结果之一就是,随着随机的边被添加,随机图的属性会突然变化。 展示这类转变的一个属性是连通性。...以下生成器函数枚举所有可能的边,并使用辅助函数flip,来选择哪些应添加到图中: def random_pairs(nodes, p): for i, u in enumerate(nodes)...这里是几个如何处理它的建议: 编写一个名为m_pairs的函数,该函数接受节点列表和边数m,并返回随机选择的m个边。一个简单的方法是,生成所有可能的边的列表,并使用random.sample。

95230
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Python实现网络数据的可视化:NetworkX与Plotly的应用探索

    以下将介绍如何使用NetworkX和Plotly创建一个更复杂的网络图,并添加节点的属性和标签。1. 创建带有属性的网络我们首先创建一个包含节点属性和边权重的图。...# 创建一个带有属性的图G = nx.Graph()# 添加节点和属性G.add_node(1, label='Alice', group=1)G.add_node(2, label='Bob', group...可视化带有属性的网络接下来,我们将使用Plotly来可视化这个带有属性的网络。我们将节点的颜色根据其分组进行区分,并使用边的权重调整边的粗细。...通过使用节点的属性和边的权重,我们能够更好地展示网络的结构和特点。节点的颜色代表其所属的分组,边的粗细则表示连接的强度。...我们进一步探讨了如何在网络图中添加节点属性和边权重,以更直观地展示网络的结构和特点。通过节点的颜色区分分组、边的粗细表示连接强度,使网络图更加清晰和易于理解。

    32020

    NetworkX绘图,更上一层

    公众号:尤而小屋 编辑:Peter 作者:Peter 大家好,我是Peter~ 本文给大家带来Networkx绘图的进阶方法,包含: 自定义图形边缘色、图形中心点、节点颜色、图形布局 绘制带有权重的图...G.add_edge("c", "e", weight=0.7) G.add_edge("c", "f", weight=0.9) G.add_edge("a", "d", weight=0.3) # 根据阈值0.5选择不同的边...在自我网络图中,一个节点代表自我,其他节点代表与自我有直接联系的人(也被称之为分身),边则表示这些联系。...在随机几何图中,节点是根据一定的几何过程(通常是泊松点过程)随机分布在空间中的,而图中的边则对应于这些节点之间的无线连接。...几何距离依赖性:节点间的连接(即图的边)通常基于它们之间的欧几里得距离,只有当两个节点的距离小于某个阈值时,它们之间才存在一条边。 连通性分析:随机几何图常用于分析无线通信网络的连通性和覆盖范围。

    21810

    Networkx:Python的图论与复杂网络建模工具

    我们还可以使用 nx.draw_networkx_nodes 和 nx.draw_networkx_edges 函数分别绘制节点和边。...target) 函数获取从源节点到目标节点的最短路径长度。...节点和边的属性问题:在处理节点和边的属性时,可能会遇到无法正确获取或设置属性的问题。这可能是因为在创建节点或边时没有正确设置属性,或者在获取属性时使用了错误的键。...确保在创建节点或边时设置了正确的属性,并在获取属性时使用正确的键。 最短路径问题:在计算最短路径时,可能会遇到无法找到路径或者路径长度不正确的问题。这可能是因为图中存在孤立节点或者图不是连通的。...用户可以根据自己的需求和情况,选择最适合自己的工具。 好了,今天的分享就到这里。希望这篇文章能帮助你更好地理解和使用 Networkx。如果你有任何问题或者建议,欢迎在评论区留言。

    88710

    一文读懂Python复杂网络分析库networkx | CSDN博文精选

    Graph-无向图 节点 边 属性 有向图和无向图互转 3....networkx支持创建简单无向图、有向图和多重图(multigraph);内置许多标准的图论算法,节点可为任意数据;支持任意的边值维度,功能丰富,简单易用。...-无向图 如果添加的节点和边是已经存在的,是不会报错的,NetworkX会自动忽略掉已经存在的边和节点的添加。...边常用函数 edges(G[, nbunch]):返回与nbunch中的节点相关的边的视图 number_of_edges(G):返回图中边的数目 non_edges(graph):返回图中不存在的边...对于每一个图、节点和边都可以在关联的属性字典中保存一个(多个)键-值对。 默认情况下这些是一个空的字典,但是可以增加或者是改变这些属性。

    29K42

    NetworkX使用手册

    import networkx as nx G = nx.Graph() 根据图的定义,一个图包含一个节点集合和一个边集。...比如,我们先将图G里的所有节点和边删除: G.clear() 然后我们新的节点和边,NetworkX会自动忽略掉已经存在的边和节点的添加: G.add_edges_from([(1,2),(1,3)])...- 节点和边的使用  你可能已经注意到在NetworkX中节点和边并没有被指定一个对象,因此你就可以自由地指定节点和边的对象。...对于每一个图、节点和边都可以在关联的属性字典中保存一个(多个)键-值对。...为了让算法可以在两类图中都可以工作,无向图中的neighbors()和degree()分别等价于有向图中的successors()和有向图中的in_degree()和out_degree()的和。

    3.1K20

    networkx(图论)是什么

    )向图中添加多条边;在添加边时,如果顶点不存在,那么networkx会自动把相应的顶点加入到图中。...,同时设置边得属性 ##边的权重weight是非常有用和常用的属性,因此,networkx模块内置以一个函数,专门用于在添加边时设置边的权重,该函数的参数是三元组,前两个字段是顶点的ID属性,用于标识一个边...,通过 edge=(node1,node2) 来标识边,进而从图中找到边: g.remove_edge(edge) g.remove_edges_from(edges_list) 4、更新边得属性: 通过边来更新边的属性...图属性 图的属性主要是指相邻数据,节点和边 1、adj ajd返回的是一个AdjacencyView视图,该视图是结点的相邻的顶点和顶点的属性,用于显示用于存储与顶点相邻的顶点的数据,这是一个只读的字典结构...,从图中的任一顶点出发,对图中的所有顶点访问一次且只访问一次。

    3.9K21

    复杂性思维第二版 三、小世界图

    小世界属性”,即节点之间的平均距离,以最短路径上的边数来衡量,远远小于预期。...Watts 和 Strogatz 从两种很好理解的图开始:随机图和正则图。在随机图中,节点随机连接。在正则图中,每个节点具有相同数量的邻居。...他们考虑这些图的两个属性,群聚性和路径长度: 群聚是图表的“集团性”(cliquishness)的度量。在图中,集团是所有节点的子集,它们彼此连接;在一个社交网络中,集团是一群人,彼此都是朋友。...Watts 和 Strogatz 提出了用于构建小世界图的过程: 从一个正则图开始,节点为n,每个节点连接k个邻居。 选择边的子集,并将它们替换为随机的边来“重新布线”。...为了计算可能的选择,我们从节点集开始,它是一个集合,并且移除u和它的邻居,这避免了自环和多边。 然后我们从选项中选择new_v,将u到v的现有删除,并从添加一个u到new_v的新边。

    74410

    networkx是什么

    )向图中添加多条边;在添加边时,如果顶点不存在,那么networkx会自动把相应的顶点加入到图中。...,同时设置边得属性 ##边的权重weight是非常有用和常用的属性,因此,networkx模块内置以一个函数,专门用于在添加边时设置边的权重,该函数的参数是三元组,前两个字段是顶点的ID属性,用于标识一个边...,通过 edge=(node1,node2) 来标识边,进而从图中找到边: g.remove_edge(edge) g.remove_edges_from(edges_list) 4、更新边得属性: 通过边来更新边的属性...6、查看边是否存在 g.has_edge(1,2) 图属性 图的属性主要是指相邻数据,节点和边 1、adj ajd返回的是一个AdjacencyView视图,该视图是结点的相邻的顶点和顶点的属性,...,从图中的任一顶点出发,对图中的所有顶点访问一次且只访问一次。

    4.9K60

    基于NetworkX构建复杂网络的应用案例

    ,同时添加权重 2.2对节点的出度分布进行分析 2.3通过边的权重绘制不同样式的图,实现对图中节点和边的选择 3.总结 基于NetworkX构建复杂网络的应用案例 本文内容 本文主要包含两个部分: 1...同时给网络拓扑图添加权重节点,生成带权重的复杂网络拓扑图。生成拓扑图后,对节点的出度进行直方图分析,分析其均值mu和方程sigma。然后可以根据传入的边的权重,绘制不同的边的显示样式。...1.1networkx安装 pip install networkx 需要注意的是,networkx有1.x和2.x的版本,两个版本的用法有所不同,默认安装2.X版本。...,边,位置等信息到图中 # 生成一个图 G = nx.Graph() # 添加所有节点信息 G.add_nodes_from(nodes=nodes_list,pos=pos) # 添加所有的边信息...2.3通过边的权重绘制不同样式的图,实现对图中节点和边的选择 这里采用输入最大权重和最小权重2个参数,筛选出3份不同的边,然后采用不同的样式进行绘制。

    1.7K30

    干货!利用Python绘制精美网络关系图

    利用networkx可以以标准化和非标准化的数据格式存储网络、生成多种随机网络和经典网络、分析网络结构、建立网络模型、设计新的网络算法、进行网络绘制等,Networkx主要用于创造、操作复杂网络,以及学习复杂网络的结构...安装其他包的时候,将networkx改成其他包名即可。 三、NetworkX基础知识 1.创建图 首先我们需要创建一个没有边和节点的图形,说白了就是先拿出一张白纸,我们准备在白纸上作画了。...常用的就是第一种图了 2.添加节点 这一步的作用就是在图中添加节点,我们可以一次添加一个节点,也可以添加一个节点列表 G.add_node()#添加节点1 G.add_nodes_from([,...])#添加节点2,3 两个命令是不一样的需要注意一下哦 3.添加边 当然边也可以单个添加和多个添加 G.add_edge('x', 'y') # 添加一条边起点为x,终点为y G.add_edges_from...4.给图中的节点和边添加属性 运行样式: - `node_size`: 指定节点的尺寸大小(默认是) - `node_color`: 指定节点的颜色 (默认是红色,可以用字符串简单标识颜

    11.2K41

    基于networkx分析Louvain算法的社团网络划分

    两者唯一的区别在于,有向图中的边是有方向性的。  图2:有向图和无向图  注:上图左边为无向图,右边为有向图。黑色加粗部分表示边的方向。比如:1—>2便是边是1到2这个方向。 ...3图的度 度是相对于图中点的概念,图中任意一点v的度是指:与v相连的边的条数。在有向图中与顶点v出关联的边的数目称为出度,与顶点v入关联的边的数目称为入度。...2图遍历之DFS算法(深度优先搜索) 算法步骤:  选择起始顶点涂成灰色,表示还未访问;从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了...2求图的常用属性    读取CSV文件获取图的边集合列表 部分原始数据如图:    计算图的各种属性整体图,看到所有人都是有联系的,由于人物比较多,所以图显示不出具体的效果。...图:整体关系图  各个节点的度,也就是和其他节点连接的数量,越多表示人物在剧中的重要程度。从列表看出度数大的就是剧中的主角了。

    3.6K30

    【白话机器学习】算法理论+实战之PageRank算法

    那么该如何查询节点呢?如果你想要得到图中所有的节点,就可以使用 G.nodes(),也可以用 G.number_of_nodes() 得到图中节点的个数。...关于边的增加、删除、查询增加边与添加节点的方式相同,使用 G.add_edge(“A”, “B”) 添加指定的“从 A 到 B”的边,也可以使用 add_edges_from 函数从边集合中添加。...我们也可以做一个加权图,也就是说边是带有权重的,使用add_weighted_edges_from 函数从带有权重的边的集合中添加。...另外,我们可以使用 remove_edge 函数和 remove_edges_from 函数删除指定边和从边集合中删除。...另外可以使用 edges() 函数访问图中所有的边,使用 number_of_edges() 函数得到图中边的个数。

    1.7K40

    图论与图学习(二):图算法

    否则,选择标记有最小暂定距离的未访问节点,将其设置为新的「当前节点」,然后回到步骤 3。...最小权重生成树 最小权重生成树(minimum spanning tree)是图(一个树)的一个子图,其用权重和最小的边连接了图中的所有节点。 最小生成树应该用于无向图。...移除该边后,重新计算所有边的居间性。 重复步骤 2 和 3,直到不再剩余边。...我们从每个节点一个聚类开始,然后合并两个「最近」的节点。 但我们如何衡量聚类是否相近呢?我们使用相似度距离。令 d(i,j) 为 i 和 j 之间的最短路径的长度。 ?...下一篇文章我们将介绍图学习,这能提供预测图中节点和边的方法,从而处理缺失值或预测新的关系。 扩展阅读: Neo4j 的图算法全面指南,Mark Needham & Amy E.

    3.6K22

    PageRank、最小生成树:ML开发者应该了解的五种图算法

    这里不再展开介绍工作原理,我们只看一下如何使用 Networkx 启动和运行此代码。 应用 从零售角度看:假设我们有很多客户使用大量账户。使用连接组件算法的一种方法是在这个数据集中找出不同的族。...下面以包含城市和城市间距离信息的图为例,实现我们的目的。 ? 带有随机距离的图 首先创建一个带有城市名(边)和距离信息的列表,距离代表边的权重。...该算法可以在不同的数据上运行,从而满足上面提到的各种用例。 最短路径 继续使用上述示例,现在我们有德国城市及城市之间距离的图。如何找到从法兰克福(起始节点)到慕尼黑的最短距离?...最终,令我惊讶的是,这个算法成为我的著名成果之一。 应用 Dijkstra 算法的变体在 Google 地图中有着广泛使用,用于寻找最短路线。 假设你有沃尔玛商店中各个过道位置和过道之间距离的数据。...您希望为从 A 到 D 的顾客提供最短路径。 ? 你已经看到 LinkedIn 显示一级连接和二级连接的方式。而这背后的机制是什么呢? ?

    1K40

    【数学建模】——【python】实现【最短路径】【最小生成树】【复杂网络分析】

    要求: (1)使用Python编程,可以利用networkx库来构建图和处理图算法。 (2)绘制结果应包含所有节点(城市)和表示最短路径的边,边的粗细或颜色可以表示距离长短。...绘制图形: 使用 nx.spring_layout 生成图节点的布局。 使用 nx.draw 和 nx.draw_networkx_edge_labels 绘制图和边的权重。...最小生成树是图中的一个子图,它包含图中所有顶点且边的权重之和最小。 要求: (1)使用networkx库来处理图结构。...通过贪心策略,逐步选择权重最小的边,构建权重和最小的树。 可视化: 使用 networkx 库构建图并计算MST。 使用 matplotlib 库绘制图形,展示MST的所有节点和边。...然后,在此MST的基础上,选择一个“核心城市”作为起点,使用Dijkstra算法找出从该城市到其他所有城市的最短路径。

    25710

    人群接触网络中的 SIR 疫情模拟

    如果将人之间的接触关系表示成图,那么图中的节点表示人,边则表示人之间的接触关系。不难想象,如果一个人与他人的接触越多,则在图中该节点与其他节点连接的边也会越多。...主要的参数有网络节点数 m 和新加节点的边数 n 。在我们的场景中,第二个参数的含义是一个人平均与多少人接触。Networkx 包还提供了一系列将网络可视化的函数,能够方便地观察网络的结构。...包,命名为nx random_network = nx.barabasi_albert_graph(100,2) # 生成无标度网络,节点数和每个节点边数分别为100和2 #网络可视化 nx.draw_networkx...这里我们用两种策略进行对比分析: 随机选择初始感染者; 选择度数最高的点作为初始感染者。 首先,我们随机选择一个种子节点。...,选择度最高的节点作为种子感染者。

    8.9K43

    python数据结构之图

    通常,图形以图解形式描绘为顶点的一组点或环,并通过边的线或曲线连接。--百度百科 networkx是一个python包,用于创建、操作和研究复杂网络的结构、动态和功能。...使用NetworkX,您可以以标准和非标准数据格式加载和存储网络,生成多种类型的随机和经典网络,分析网络结构,构建网络模型,设计新的网络算法,绘制网络,等等 要实现的图的边和节点示意如下,不过在实现的过程中均以无向图为主...画和边的标签。...nx.draw_networkx_edge_labels(g, pos, edge_labels=edge_labels) plt.show() 结果如下: 4、在图可视化中继续追加节点的位置和边的权重...('获取节点i的属性值=', g.nodes[1]["wight"]) # 获取节点i的属性 = 5 # 查看图中所有点的信息 G.nodes.data() print('

    1.6K20

    Python Networkx基础知识及使用总结

    (计算方法:网络中边数量的2倍除以节点数) 有向图中顶点入度之和等于顶点出度之和。 路径长度(Path length)——节点与节点之间的距离,即两节点间所需经过的最小边数。...联通度(Connectivity)——图中的这样的k个节点,从图中去掉所有的这些节点以及它们关联的所有边后,所得到的图不再是连通图或是平凡图,称k为图的节点连通度。...三、networkx模块常用的属性和方法 1.图 degree(G[, nbunch, weight]):返回单个节点或nbunch节点的度数视图。...common_neighbors(G, u, v):返回图中两个节点的公共邻居。 3.边 edges(G[, nbunch]):返回与nbunch中的节点相关的边的视图。...number_of_edges(G):返回图中边的数目。 non_edges(graph):返回图中不存在的边。

    10.2K20
    领券