首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

NumPy之:多维数组中的线性代数

简介 本文将会以图表的形式为大家讲解怎么在NumPy中进行多维数据的线性代数运算。 多维数据的线性代数通常被用在图像处理的图形变换中,本文将会使用一个图像的例子进行说明。...通常我们用一个四个属性的数组来表示。 对于一个二维的图像来说,其分辨率可以看做是一个X*Y的矩阵,矩阵中的每个点的颜色都可以用(R,G,B)来表示。...img对象中,使用type可以查看img的类型,从运行结果,我们可以看到img的类型是一个数组。...奇异值跟特征值类似,在矩阵Σ中也是从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。...在上述的图像中,U是一个(80, 80)的矩阵,而Vt是一个(170, 170) 的矩阵。而s是一个80的数组,s包含了img中的奇异值。

1.7K30

NumPy之:多维数组中的线性代数

简介 本文将会以图表的形式为大家讲解怎么在NumPy中进行多维数据的线性代数运算。 多维数据的线性代数通常被用在图像处理的图形变换中,本文将会使用一个图像的例子进行说明。...通常我们用一个四个属性的数组来表示。 对于一个二维的图像来说,其分辨率可以看做是一个X*Y的矩阵,矩阵中的每个点的颜色都可以用(R,G,B)来表示。...img对象中,使用type可以查看img的类型,从运行结果,我们可以看到img的类型是一个数组。...奇异值跟特征值类似,在矩阵Σ中也是从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。...在上述的图像中,U是一个(80, 80)的矩阵,而Vt是一个(170, 170) 的矩阵。而s是一个80的数组,s包含了img中的奇异值。

1.7K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【NumPy 数组过滤、NumPy 中的随机数、NumPy ufuncs】

    python之Numpy学习 NumPy 数组过滤 从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。 在 NumPy 中,我们使用布尔索引列表来过滤数组。...实例 生成一个 0 到 100 之间的随机浮点数: from numpy import random x = random.rand() print(x) 生成随机数组 在 NumPy 中,我们可以使用上例中的两种方法来创建随机数组...print(x) 实例 生成有 3 行的 2-D 数组,每行包含 5 个从 0 到 100 之间的随机整数: from numpy import random x = random.randint...实例 生成包含 5 个随机浮点数的 1-D 数组: from numpy import random x = random.rand(5) print(x) 实例 生成有 3 行的 2-D 数组...,每行包含 5 个随机数: from numpy import random x = random.rand(3, 5) print(x) 从数组生成随机数 choice() 方法使您可以基于值数组生成随机值

    13210

    numpy总结

    numpy的功能: 提供数组的矢量化操作,所谓矢量化就是不用循环就能将运算符应用到数组中的每个元素中。...numpy.reshape((2,2))转换数组阵维数为2行2列 numpy.arange(4)生成0到3的一行矩阵。...numpy.ravel()输出一个多维数组被抹平成一维数组的视图 numpy.resize()直接修改数组,而reshape()返回修改后的新数组 numpy.transpose()转置...numpy.convolve()卷积,两个函数相乘,移动窗口均值可以用1/窗口长度组成的数组和原数组作为参数 numpy.linespace()返回一个元素值在指定范围均匀分布的数组...0),a)从a中抽取能被2整除的元素 np.nonzero(a)抽取非0元素 np.outer(a数组,b数组)a数组的元素*b数组行,生成二维数组 金融专用函数 np.fv()

    1.6K20

    70个NumPy练习:在Python下一举搞定机器学习矩阵运算

    难度:3 问题:过滤具有petallength(第3列)> 1.5和sepallength(第1列)行。 答案: 35.如何从numpy数组中删除包含缺失值的行?...难度:3: 问题:选择没有nan值的iris_2d数组的行。 答案: 36.如何找到numpy数组的两列之间的相关性?...例如,单元(0,2)的值为2,这意味着数字3在第一行中恰好出现2次。 答案: 50.如何将多维数组转换为平坦的一维数组? 难度:2 问题:将array_of_arrays转换为平坦的线性一维数组。...输入: 输出: 答案: 55.如何使用numpy对多维数组中的元素进行排序? 难度:3 问题:创建一个与给定数字数组a相同形式的排列数组。...答案: 64.如何从二维数组中减去一维数组,其中一维数组的每个元素都从相应的行中减去? 难度:2 问题:从二维数组a_2d中减去一维数组b_1d,使得每个b_1d项从a_2d的相应行中减去。

    20.7K42

    【深度学习】 NumPy详解(二):数组操作(索引和切片、形状操作、转置操作、拼接操作)

    随机数生成:Numpy包含了用于生成各种概率分布的随机数的函数,如均匀分布、正态分布、泊松分布等。...例如,arr[0]将返回数组arr中的第一个元素。 使用布尔索引:可以使用布尔数组作为索引来选择满足特定条件的元素。例如,arr[arr > 5]将返回数组arr中大于5的元素。...使用多维索引:对于多维数组,可以使用多个整数或布尔索引来访问特定的元素。例如,arr[0, 1]将返回多维数组arr中第一行第二列的元素。...切片 使用基本切片:可以使用基本切片表示法从数组中获取连续的子数组。例如,arr[1:5]将返回数组arr中索引为1到4的元素。 使用步长切片:可以使用步长切片表示法从数组中获取间隔的子数组。...使用.T属性 在NumPy中,多维数组对象(ndarray)具有一个名为.T的属性,可以用于进行转置操作。该属性返回原始数组的转置结果,即行变为列,列变为行。

    11910

    NumPy 使用教程

    参考链接: Python中的numpy.logaddexp NumPy 基础使用教程(1)- 数值类型及多维数组  一、介绍  1.1 基础内容  如果你使用 Python 语言进行科学计算,那么一定会接触到...而 NumPy 最核心且最重要的一个特性就是 ndarray 多维数组对象,它区别于 Python 的标准类,拥有对高维数组的处理能力,这也是数值计算过程中缺一不可的重要特性。 ...fromfile(file,dtype,count,sep):从文本或二进制文件中构建多维数组。fromfunction(function,shape):通过函数返回值来创建多维数组。...numpy.random.poisson(lam,size):从泊松分布中生成随机数。numpy.random.power(a,size):从具有正指数 a-1 的功率分布中在 0,1 中生成随机数。...numpy.ceil(x):返回输入的上限(标量 x 的底部是最小的整数 i).numpy.trunc(x):返回输入的截断值。 随机选择几个浮点数,看一看上面方法的区别。

    2.5K20

    Python必备基础:这些NumPy的神操作你都掌握了吗?

    ndarray是存储单一数据类型的多维数组,而ufunc则是能够对数组进行处理的函数。 NumPy的主要特点: ndarray,快速,节省空间的多维数组,提供数组化的算术运算和高级的广播功能。...nd12[1:3,1:3] #截取一个多维数组中,数值在一个值域之内的数据 nd12[(nd12>3)&(nd12<10)] #截取多维数组中,指定的行,如读取第2,3行 nd12[[1,2]] #...或nd12[1:3,:] ##截取多维数组中,指定的列,如读取第2,3列 nd12[:,1:3] 如果你对上面这些获取方式还不是很清楚,没关系,下面我们通过图形的方式说明如何获取多维数组中的元素,如图1...▲图1-1 获取多维数组中的元素 获取数组中的部分元素除通过指定索引标签外,还可以使用一些函数来实现,如通过random.choice函数从指定的样本中进行随机抽取数据。...多维数组的合并 import numpy as np a=np.arange(4).reshape(2,2) b=np.arange(4).reshape(2,2) #按行合并 c=np.append(

    4.8K30

    NumPy(1)-常用的初始化方法

    一、NumPy介绍   NumPy是Python中科学计算的基础包,它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种API,有包括数学、逻辑、形状操作...、排序、选择、输入输出、离散傅立叶变换、基本线性代数,基本统计运算和随机模拟等等。...ndarray 对象是用于存放同类型元素的多维数组。ndarray 中的每个元素在内存中都有相同存储大小的区域。...NumPy 数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。 NumPy 数组有助于对大量数据进行高级数学和其他类型的操作。...参数解释: * shape:创建出来数组的形状,是一维数组,还是二维数组,还是多维数组等等       * dtype:数据的类型       * order:指定内存重以行优先(‘C’)还是列优先(

    33310

    NumPy:Python科学计算基础包

    生成Numpy数组 从已有数据中创建数组 一般来说,对于一些基础的数据,我们在Python中都是直接使用list。...设置随机数种子 numpy.random.random_sample 生成随机的浮点数 下面,我们举一个简单的使用例子: import numpy as np #生成3行3列0到1的随机数 nd1...) #打乱nd2的数据 np.random.shuffle(nd2) print(nd2) 运行之后,效果如下: 创建多维数组 在上面随机数的数组创建中,我们看到了其实numpy可以创建多维数组,...函数 意义 np.zeros((3,4)) 创建3行4列全部为0的数组 np.ones((3,4)) 创建3行4列全部为1的数组 np.empty((2,4)) 创建2行4列的空数组,空数组中的值并不为...元素的截取 既然创建了Numpy数组,那么我们就需要获取数组中的元素进行操作。那么如果获取Numpy数组中指定的元素呢?

    30230

    Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)

    2.44948974 3. ] 1.3 数组的创建 1.3.1 array创建 NumPy模块中的array函数可以生成多维数组。...0.24012724] 由运行结果可知:一维数组中的每个元素都是[0.0, 1.0)之间的随机数 【示例2】使用numpy.random.random(size=None)创建二维数组 # 函数的参数...ndarray对象是用于存放同类型元素的多维数组。 ndarray中的每个元素在内存中都有相同存储大小的区域。...使用 ravel 函数将多维数组变成一维的数组 ravel()是NumPy中的一个函数,它用于将数组展平成一维数组。...使用 flatten函数将多维数组变成一维的数组 flatten()是NumPy数组对象的一个方法,用于将多维数组展平成一维数组。

    8.7K11

    Python数据分析常用模块的介绍与使用

    Numpy在导入的时候可以重命名 一般都是重命名成np Numpy的使用 Numpy生成数组 ndarray 一个ndarray是Python中NumPy库中的一个数据结构,用于存储和操作具有相同数据类型的多维数组...random生成数组 使用NumPy的random模块可以生成各种类型的随机数组,如整数数组、浮点数数组、多维数组等。...库中,rand函数用于生成指定形状的随机数数组,这些随机数是从[0, 1)的均匀分布中随机抽取得到的。...如果想生成其他分布的随机数,可以使用NumPy中的其他随机函数,比如randn(生成标准正态分布的随机数数组)、randint(生成指定范围内的随机整数数组)等。...可以通过行和列的标签进行选择和过滤。

    32010

    【深度学习】 NumPy详解(一):创建数组的n个函数

    Numpy的主要功能包括: 多维数组:Numpy的核心是ndarray对象,它是一个多维数组,可以存储同类型的元素。这使得Numpy非常适合处理向量、矩阵和其他多维数据结构。...ndarray代表了一个多维的数组,可以存储相同类型的元素。 a. 多维数组的属性 ndarray.shape:返回表示数组形状的元组,例如(2, 3)表示2行3列的数组。...使用numpy.random模块 numpy.random模块提供了多种随机数生成函数,可以用来创建具有随机值的数组。...import numpy as np # 创建形状为(2, 2)的随机数数组 random_arr = np.random.random((2, 2)) # 创建形状为(3, 3)的随机整数数组(范围为...使用numpy.empty函数 可以使用numpy.empty函数创建指定形状的未初始化数组,数组的元素值将是内存中的任意值。

    9910

    Python|Numpy的常用操作

    为了弥补这种结构的不足,Numpy诞生了,在Numpy中提供了两种基本的对象:ndarray和ufunc。ndarray是存储单一数据类型的多维数组,ufunc则是能够对数组进行处理的函数。...02 生成ndarray的几种方式 从已有数据中创建 # 将列表转换成ndarray import numpy as np list1 = [1.1, 2.2, 3, 4, 5] nd1 = np.array...0.47786533]] 创建特殊的多维数组 import numpy as np # 创建0矩阵 nd4 = np.zeros((3, 3)) # 创建全1矩阵 nd5 = np.ones((3,...04 矩阵的运算 numpy中的linalg模块中提供了很多矩阵运算的函数,主要的函数如下: diag():以一维数组的方式返回方阵的对角线元素 dot():矩阵乘法 trace():求矩阵的迹(对角线元素的和...) print(nd2) # [0 3 1 4 2 5] # [0 1 2 3 4 5] 06 常用的数学函数 numpy中也提供了大量的数学函数,并且这些函数的运行速度要比math等库中的函数快很多

    1.4K20

    Numpy中的索引与排序

    花哨的索引探索花哨的索引组合索引Example:选择随机点利用花哨索引修改值数组排序Numpy中的快速排序:np.sort,np.argsort部分排序:分割 花哨的索引 花哨的索引和前面那些简单的索引非常类似...# 利用花哨索引随机选择20个不重复的索引值 indices = np.random.choice(X.shape[], , replace=False) indices array([, , , ,...数组排序 例如, 一个简单的选择排序重复寻找列表中的最小值, 并且不断交换直到列表是有序的。...可以在 Python 中仅用几行代码来实现: # 用Python代码实现选择排序 import numpy as np def selection_sort(x): for i in range...x[i] array([, , , , ]) 沿着行或列排序 通过axis参数,沿着多维数组的行或列进行排序,这种操作将会丢失行或列值之间的关系 rand = np.random.RandomState

    2.5K20
    领券