智能门锁在经过2018年的爆发直至近几年来的持续增长,目前市场上各类的产品基本都涵盖了密码、刷卡、指纹这几项关键的开门方式,人脸识别技术作为一种新的引用技术,成为众多厂家为追求产品差异化而形成的一种趋势...图片来源:https://www.sohu.com/a/501784145_161795 2D人脸识别技术 2D人脸识别技术早在安防、监控、门禁、考勤中就已有应用,其硬件结构相当于一颗RGB摄像头,通过捕捉人脸图像...目前基于神经网络的人脸识别算法在各种开源数据集上测试的准确率已经达到99.58%,但基于二维数据的图像检测,其深度信息丢失,所采集到的二维特征难以应对“活体”伪装攻击。...图片来源:《2021人脸识别行业白皮书》 3D人脸识别技术 3D人脸识别技术加入了深度信息算法技术,与2D识别技术相比,其识别准确率相差不大,但是在活体检测的准确率上有一定的提高。...:艾芯智能等; 以双目视觉为主打的厂家有:商汤、旷视等 与2D人脸识别相比,3D人脸识别结合深度信息,在防伪安全上由此有了提高,在3D人脸识别的3中技术中,结构光作用距离相对较近,良率及一致性相对较差;
每个人的皮肤纹路在图案、断点、交叉点上各不相同,指纹识别技术依靠皮肤纹路的唯一性、稳定性,把个体身份同指纹对应起来,通过与预存指纹对比进行身份识别。...电容式指纹识别 电容式指纹识别是将电容感测点阵整合于一块传感器中,当指纹按压传感器表面时,由于人体指纹呈沟壑结构,波峰与波谷产生的电荷导电率不同,通过面阵的电容识别可以将图像信号转化成电信号。...光学式指纹识别成本低,非常耐用,目前大量的门口打卡机都是这种方案,但光学式方案缺点也很明显:耗电高,由于依赖于纯图案成相识别,因此对于脏、湿手指识别度较弱,且存在假图形的防伪识别能力差的问题。...但与光学式传感器类似,基于图像的识别上,超声波指纹识别也容易被3D打印的树脂指纹模破解,因此其防伪能力存在一定的隐患。...近年来,针对防伪攻击的考究,指静脉的方案有相关厂家使用,该方案通过近红外光学照射,获取手指静脉图像,由于人体静脉血管的结构很难伪造,因此在防伪攻击方面具备优势,但该方案需要较大的结构空间、成本偏高,目前在门锁行业依然以电容式指纹识别最为主流
指纹 人脸识别均存较高风险 专家称,防范“小黑盒”其实并不难,目前市场上主流企业的产品基本已经解决了这一问题。不过,在此次监测中,专家还发现了好几个风险不小的漏洞,其中就包括指纹和人脸识别。...在门锁开启方式上,密码和生物识别是目前我国智能门锁行业应用最多的,所谓生物特征识别技术主要是指纹和人脸识别技术。...其实,有人脸识别开锁功能的智能门锁同样存在较高风险。 国家通用电子元器件及产品质检中心工作人员李乐言说:“有4批次产品采用了人脸识别开锁的方式,目前从价格上来看,这4批次的产品都是属于高端的产品。...有关部门建议消费者,尽量不使用或关闭人脸识别功能和远程开锁功能,在日常使用中妥善保管好信息识别卡,防止被非法读取和复制。...使用指纹识别智能门锁的消费者,若发现指纹识别模块出现异常,应立即停止使用指纹识别功能,并联系生产企业解决。
1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别...,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It...= 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir(...,但由于SD卡内无文件,无法匹配人脸 ?...按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。
、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0...,识别成功保存图片到本地 getVideoFromCamera(); // 2- 从本地视频文件中识别人脸 // getVideoFromFile();...// 3- 本地图片人脸识别,识别成功并保存人脸图片到本地 face(); // 4- 比对本地2张图的人脸相似度 (越接近1越相似) String basePicPath...while(i<3) { // 匹配成功3次退出 capture.read(video); HighGui.imshow("实时人脸识别...: 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。
1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像...该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。
降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸...# 根据训练的数据来对新图片进行识别的过程。...,其他可以不写 scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确 minNeighbors = 1, #为5表示有5次重叠才认为人脸存在... minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:
本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。...人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。...还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别...识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。...流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop
python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对,从而辨识身份的技术。...不过肯定的一点是,你的人脸识别首先要将人脸转化为计算机可以识别的数据,人脸识别其实就是计算机方面的数据识别。...人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等...当然对于视频动态图像也是可以的,我们python中也有调用摄像头的模块,以及也有可以将手机的摄像头将摄像头转换地址的,我们可以在代码中加入进来,调用摄像头并控制拍照片,这样就可以和这个结合起来,实现动态人脸识别...我们可以有这个思路,这里只是给大家简单介绍一下python的这个人脸识别库。当然也会有其他的编程语言的实现人脸识别。 后期会写出动态拍照人脸识别。
在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给...Arduino的HC-05模块,让Arduino控制舵机开门。...由于我们用的是Arduino UNO R3没有蓝牙模块,要接收蓝牙数据,可以通过外接HC-05蓝牙模块解决。...import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别...def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.LBPHFaceRecognizer_create()#LBPH人脸识别...特征图像划分为一个个单元格时,每个单元格在水平方向上的像素个数 grid_y表示将LBP特征图像划分为一个个单元格时,每个单元格在垂直方向上的像素个数 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象...) src表示输入图像 labels表示标签 label, confidence=cv2.face_FaceRecognizer.predict(src) src表示输入图像 注意:置信度评分用来衡量识别结果与原有模型之间的距离
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.FisherFaceRecognizer_create()#人脸识别...predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 10647.989937693492 算法:LDA人脸识别是一种经典的线性学习方法..., num_components[, threshold]]) num_components表示使用Fisherfaces准则进行线性判别分析时保留的成分数量,默认值是0 threshold表示进行识别时所使用的阈值
目录 1 读取图片 2 将图片灰度转换 3 修改图片尺寸 4 绘制矩形_圆 5 人脸检测 6 检测多张人脸 7 检测视频中的人脸 8 训练数据并人脸识别 8.1 训练数据 8.2 人脸识别 1 读取图片...# 导入模块 import cv2 as cv # 读取图片 img=cv.imread('E:/girl.jpg') # 路径中不能有中文,否则加载图片失败 # 将图片缩小至原来的1/2 height...8 训练数据并人脸识别 8.1 训练数据 import os import cv2 import sys from PIL import Image import numpy as np def getImageAndLabels...face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) # 保存文件 recognizer.write('trainer.yml') 8.2 人脸识别...(gray) for x, y, w, h in faces: cv2.rectangle(reSize, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人脸识别
,cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.EigenFaceRecognizer_create()#人脸识别...predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 19228.277485215305 算法:PCA人脸识别是将高维的人脸数据处理为低维数据后...(降维),再进行数据分析和处理,获取识别结果。...num_components[, threshold]]) num_components表示保留的分量个数,通常情况下,保留的分量个数为80 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象
'q'): break video_capture.release() cv2.destroyAllWindows() 需要的第三方库 face_recogniton是世界上最简单的人脸识别库了...你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸,该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了...99.38%,它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。...datetime 是Python处理日期和时间的标准库;可以获取当前日期和时间,也可以获取指定日期和时间等等 glob2 是python自己带的一个文件操作相关模块,用它可以查找符合自己目的的文件,类似于...代码部分 效果 识别成功 [在这里插入图片描述] [在这里插入图片描述] 识别失败 [在这里插入图片描述] 完整代码 # -*- coding: utf-8 -*- # @Time : 2019
智能家居如火如荼的发展,坚定了我们设计智能门锁的想法。 本作品名为基于FPGA Facenet 与物联网的智能门锁,着眼于人脸识别技术,物联 网技术的综合应用。...门 锁在我们的生活当中无处不在,有门锁的地方,就可以有我们作品的身影。 1.3 主要技术特点 (1)基于 Facenet 的人脸识别算法,可以实现多人识别,实时识别。...以下为系统 AXI 接口连接电机驱动模块部分: ? 人脸检测是人脸识别的基础,算法层次使用 Opencv 的 DNN 进行人脸检测。 ?...目前,以上功能均以实现,各模块工作稳定,连接正常。 3.2 性能参数 (1)人脸识别实时性: 采用人脸检测和人脸识别加速算法,本系统稳定运行 时人脸识别速度可以达到每秒十帧以上,最高可达三十帧。...(3)人脸识别速度:本系统可以实现实时人脸识别,考虑电磁锁的延时,门锁 解锁速度保证在 0.5s 内。
该项目基于讯飞SDK实现的人脸检测,使用face++的webapi实现的人脸注册以及人脸识别。...人脸识别,我们可以理解为从一个专门保存人脸特征值的数据集合中找到最匹配的一组特征值。...人脸识别 (FR引擎) 当检测出人脸时,对人脸进行识别,如果人脸特征集合中存在该人脸信息,读取出该人脸信息及人员信息。...第三步: 经过上述的两部,我们已经成功的从图片中识别到了人脸,并且将该人脸在图片中的位置获取到了,接下来我们要做的就是使用 FR 人脸识别引擎识别该位置人脸中的特征信息。 if (!...,并且将人脸特征信息保存到本地,这个数据将会用于人脸识别获取人员信息的流程。
现如今,在案件侦破,小区门禁,手机解锁等等方面,我们都需要用到人脸识别技术,这项技术应用到了很多的场景当中,对于日常的生活来说也提供了不少的便利,下面我们就将为大家介绍人脸识别技术。...,而且通过人脸识别技术,可以不易察觉,不会陷入被人伪装欺骗的地步。...虽然人脸识别技术的优点非常多,但是我们也需要注意到它的缺点,因为人类的脸部或多或少存在着一定的相似性,所以对于人脸的外形来说,它是很不稳定的,而且有些人脸识别技术还可能会导致信息的泄露。...二、人脸识别技术的原理 人脸识别是识别技术的一种,主要是通过人类的面部特征来进行身份确认,在判断出是否存在人脸之后,就会开始检测脸部的位置和大小,根据检测出来的信息,就可以提出身份特征,然后和已知的人脸之间进行对此...人脸识别技术在现在的社会中已经越来越普遍了,我们也日常的生活中随处可见人脸识别技术,有些小区也是可以通过人脸识别技术来确定身份,不过我们在进行人脸识别的过程,也要多加注意保护自己的信息。
导读 本文主要介绍OpenCV4.5.4中人脸识别模块的使用和简易人脸识别系统的搭建,供大家参考。...OpenCV DNN人脸检测模块使用步骤演示(基于OpenCV4.5.4) 效果如下: 同时OpenCV4.5.4 新增了DNN人脸识别模块,人脸识别部分的模型是由下面几位贡献者训练提供: 在不同数据集下的准确率和推荐阈值设置...: 人脸识别模块使用介绍 DNN人脸识别例程位置: OpenCV4.5.4_Release\opencv\sources\samples\dnn\face_match.cpp 使用步骤: ①...人脸识别系统搭建 上面介绍的是搭建一个人脸比对应用,那么如何搭建一个人脸识别系统?步骤又是什么? 我们首先要知道人脸识别一般分为1:1和1:N人脸识别。...下面是使用OpenCV DNN人脸识别模块做的一个简单视频人脸识别应用,截取舌战群儒片段,选择张昭和诸葛亮图片先提取特征,然后每一帧取比对,判断相似度,标注识别结果:源码素材与其他应用内容讨论,如有需要可加入知识星球中获取
计算机视觉研究院专栏 作者:Edison_G 现阶段的人脸检测识别技术已经特别成熟,不管在什么领域都有特别成熟的应用,比如:无人超市、车站检测、犯人抓捕以及行迹追踪等应用。...所以人脸识别的精度还是需要进一步提升,那就要继续优化更好的人脸识别框架。...我们想知道Transformer是否可以用于人脸识别,以及它是否比cnns更好。 因此,有研究者研究了Transformer模型在人脸识别中的性能。...输出处的状态是最终的人脸图像嵌入,如下方程式。 然后,将位置嵌入添加到块嵌入中,以保留位置信息。 Transformer的关键模块MSA由?...随着遮挡面积的增加,人脸Transformer模型和ResNet100的识别性能得到了提高。
领取专属 10元无门槛券
手把手带您无忧上云