02 影响人脸识别性能的因素及解决方法 (1)背景和头发:消除背景和头发,只识别脸部图象部分。...比对两张脸中,其中一张脸一般来自于当前场景拍摄的照片,另一张照片一般来自于公安部或者数据库中的照片。 公安部或数据库的照片是用来作为比对标准的,也是固定且一般不可随意篡改的。...阈值设定过高,则人脸比对通过率低,误报率可能也会降低也可能会增高。 因此在人脸识别的测试中,除了要关注通过率,还要关注误报率。这两项也可以统称为是查准率。 ?...举个例子: 有8个样本,分别拿十张照片与数据库证件照进行人脸比对,其中3个确实是人证统一,另外四个人证不同。...目前人脸识别在金融、教育、景区、出入境、机场等领域已经大量应用,方便的同时也带来了一些问题,怎么做好人脸识别的测试,还是一个需要思考和深挖的课题。
xx型号人脸识别SDK测试报告 ▌一、测试环境 1.1测试设备信息 设备信息 配置信息 系统版本 Android 9 运行内存 2G 内置存储 16G CPU 4核1.6gHz 人脸识别SDK xx型号自研人脸识别...SDK(下文简称xxSDK) 1.2 照片库标准 1)图片光线自然,无过度曝光; 2)人脸为正面,五官不存在遮挡; 3)人脸区域分辨率不低于 100*100,照片不大于5M ▌二、测试场景 功能模块...人脸识别 测试目的 测试xx型号xxSDK人脸识别速度 测试数据 测试人脸库照片4600张,包含测试人员照片 测试样本人员 Xx、qq、ee、rr、tt、yy等 测试场景描述 室内自然光线下,...测试人员正脸在设备前停留,距离30cm-50cm 2.1 测试场景 ▌三、测试结果 3.1 测试结果 1)在测试中,人脸识别成功时间与人脸角度,距离摄像头远近有关; 2)xxSDK支持遮挡或丢失部分特征值...测试结果数据分析: 以上数据为正脸识别测试,测试次数为40次,平均识别成功用时为990毫秒 ▌四、测试结论 1)xxSDK支持部分特征值不完整的场景 2)进入识别范围时要稍作停留才可以识别成功 3
1.简介:facenet 是基于 TensorFlow 的人脸识别开源库,有兴趣的同学可以扒扒源代码:https://github.com/davidsandberg/facenet 2.安装和配置 facenet...5.评估 Google 预训练模型在数据集中的准确性 facenet提供了两个预训练模型,分别是基于CASIA-WebFace和 VGGFace2人脸库训练的。...可以看到识别精度可以达到 97.7%,其识别准确度还是非常不错的。
如今人脸识别这些技术这么贴近生活,研发的产品也越来越多样化,作为质量保证者测试工程师一职的我们如何去测试人脸识别呢,我们简单从大方向是分析一下看下流程图 ?...比对两张脸中,其中一张脸一般来自于当前场景拍摄的照片,另一张照片一般来自于公安部或者数据库中的照片。 公安部或数据库的照片是用来作为比对标准的,也是固定且一般不可随意篡改的。...阈值设定过高,则人脸比对通过率低,误报率可能也会降低也可能会增高。 因此在人脸识别的测试中,除了要关注通过率,还要关注误报率。这两项也可以统称为是查准率。 ?...举个例子: 有8个样本,分别拿十张照片与数据库证件照进行人脸比对,其中3个确实是人证统一,另外四个人证不同。...目前人脸识别在金融、教育、景区、出入境、机场等领域已经大量应用,方便的同时也带来了一些问题,怎么做好人脸识别的测试,还是一个需要思考和深挖的课题。
前两天自己实现了人脸识别的C++程序,具体可见: 人脸识别从0到1之完美实现 今天研究了OpenCV的人脸识别源码,经改动及调试可用于简单场景。...图片人脸检测:/samples/cpp/facial_features.cpp /* * Author: Samyak Datta (datta[dot]samyak[at]gmail.com) *...mouth_cascade.detectMultiScale(img, mouth, 1.20, 5, 0|CASCADE_SCALE_IMAGE, Size(30, 30)); return; } 较之前实现有点复杂人脸识别初探之人脸检测...(一) 同时,人脸识别源码经改动及调试成功如下: samples/cpp/tutorial_code/objectDetection/objectDetection.cpp #include "opencv2...application with OpenCV libraries target_link_libraries(opencv_example PRIVATE ${OpenCV_LIBS}) 至此,人脸识别告一段落
02 影响人脸识别性能的因素&解决方法 (1)背景和头发:消除背景和头发,只识别脸部图象部分。...比对两张脸中,其中一张脸一般来自于当前场景拍摄的照片,另一张照片一般来自于公安部或者数据库中的照片。 公安部或数据库的照片是用来作为比对标准的,也是固定且一般不可随意篡改的。...阈值设定过高,则人脸比对通过率低,误报率可能也会降低也可能会增高。 因此在人脸识别的测试中,除了要关注通过率,还要关注误报率。这两项也可以统称为是查准率。 ?...举个例子: 有8个样本,分别拿十张照片与数据库证件照进行人脸比对,其中3个确实是人证统一,另外四个人证不同。...目前人脸识别在金融、教育、景区、出入境、机场等领域已经大量应用,方便的同时也带来了一些问题,怎么做好人脸识别的测试,还是一个需要思考和深挖的课题。
1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别...,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It...= 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir(...,但由于SD卡内无文件,无法匹配人脸 ?...按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。
artifactId> 4.0.1-1.4.4 创建FaceVideo.class 主方法类 来进行人脸识别测试...、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0...// 3- 本地图片人脸识别,识别成功并保存人脸图片到本地 face(); // 4- 比对本地2张图的人脸相似度 (越接近1越相似) String basePicPath...编辑启动类:Edit Configuration VM options:-Djava.library.path=D:\Sofeware\opencv\build\java\x64; 1- 测试摄像头实时识别人脸...: 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。
1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像...该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。
降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸...# 根据训练的数据来对新图片进行识别的过程。...,其他可以不写 scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确 minNeighbors = 1, #为5表示有5次重叠才认为人脸存在... minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:
本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。...人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。...还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别...识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。...流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop
python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对,从而辨识身份的技术。...人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等...,学校都是存入数据库的。...学生在进入公寓时需要进行人脸识别,机器会进行识别。系统有两种识别方式,一是识别人像,二是进行刷卡,刷卡会将自己的信息读取,会与数据库的信息对比,也是一种识别的方式。...# 1.人脸数据 # 2.算法 # 3.建立模型 # 4.训练模型 # 5.测试模型 # 6.上线使用 # 1读取 face_image = face_recognition.load_image_file
人脸识别的应用非常广泛,而且进展特别快。如LFW的评测结果上已经都有快接近99.9%的。...此处只对谷歌的facenet进行测试。 FaceNet的架构如下所示: ? 从上面可以看出,没有使用softmax层,而直接利用L2层正则化输出,获取其图像表示,即特征抽象层。...测试:(代码见:https://github.com/davidsandberg/facenet) 由于facenet无需限制人脸对齐,但是代码中提供了MTCNN的对齐,而且在LFW评分中也发现经过对齐的分数能够提高一个档次
在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给...import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别...: f = open('faceimage.jpg','rb') img = base64.b64encode(f.read()) return img #上传到百度api进行人脸检测...def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸...f.close() return 1 if result['error_msg'] == 'pic not has face': print('检测不到人脸
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.LBPHFaceRecognizer_create()#LBPH人脸识别...特征图像划分为一个个单元格时,每个单元格在水平方向上的像素个数 grid_y表示将LBP特征图像划分为一个个单元格时,每个单元格在垂直方向上的像素个数 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象...) src表示输入图像 labels表示标签 label, confidence=cv2.face_FaceRecognizer.predict(src) src表示输入图像 注意:置信度评分用来衡量识别结果与原有模型之间的距离
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.FisherFaceRecognizer_create()#人脸识别...predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 10647.989937693492 算法:LDA人脸识别是一种经典的线性学习方法..., num_components[, threshold]]) num_components表示使用Fisherfaces准则进行线性判别分析时保留的成分数量,默认值是0 threshold表示进行识别时所使用的阈值
目录 1 读取图片 2 将图片灰度转换 3 修改图片尺寸 4 绘制矩形_圆 5 人脸检测 6 检测多张人脸 7 检测视频中的人脸 8 训练数据并人脸识别 8.1 训练数据 8.2 人脸识别 1 读取图片...8 训练数据并人脸识别 8.1 训练数据 import os import cv2 import sys from PIL import Image import numpy as np def getImageAndLabels...face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) # 保存文件 recognizer.write('trainer.yml') 8.2 人脸识别.../trainer.yml') # 准备识别的图片 img = cv2.imread(r'E:/girl.jpg') # 将图片缩小至原来的1/2 height, width = img.shape[:...(gray) for x, y, w, h in faces: cv2.rectangle(reSize, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人脸识别
,cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.EigenFaceRecognizer_create()#人脸识别...predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 19228.277485215305 算法:PCA人脸识别是将高维的人脸数据处理为低维数据后...(降维),再进行数据分析和处理,获取识别结果。...num_components[, threshold]]) num_components表示保留的分量个数,通常情况下,保留的分量个数为80 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象
process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): # 将人脸面部信息画出来...'q'): break video_capture.release() cv2.destroyAllWindows() 需要的第三方库 face_recogniton是世界上最简单的人脸识别库了...你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸,该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了...99.38%,它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。...代码部分 效果 识别成功 [在这里插入图片描述] [在这里插入图片描述] 识别失败 [在这里插入图片描述] 完整代码 # -*- coding: utf-8 -*- # @Time : 2019
领取专属 10元无门槛券
手把手带您无忧上云