前言 本项目为IOT实验室人员签到考勤设计,系统实现功能: 人员人脸识别并完成签到/签退 考勤时间计算 保存考勤数据为CSV格式(Excel表格) PS:本系统2D人脸识别,节约了繁琐的人脸识别训练部分...## 人脸识别部分 faces_cur_frame = face_recognition.face_locations(frame) encodes_cur_frame...= face_recognition.face_distance(encode_list_known, encodeFace) name = "unknown" ##未知人脸识别为...= 'unknown'): ##签到判断:是否为已经识别人脸 buttonReply = QMessageBox.question...,系统误识别率较高,安全性较低 系统优化较差,摄像头捕捉帧数较低(8-9),后台占有高,CPU利用率较高 数据保存CSV格式,安全性较低 正式版改进 加入TensorFlow深度学习,提高系统人脸识别安全性与准确性
前言 本项目为IOT实验室人员签到考勤设计,系统实现功能: 1.人员人脸识别并完成签到/签退 2.考勤时间计算 3.保存考勤数据为CSV格式(Excel表格) PS:本系统2D人脸识别,节约了繁琐的人脸识别训练部分...# 人脸识别部分 faces_cur_frame = face_recognition.face_locations(frame) encodes_cur_frame...= face_recognition.face_distance(encode_list_known, encodeFace) name = "unknown" #未知人脸识别为...= 'unknown'): #签到判断:是否为已经识别人脸 buttonReply = QMessageBox.question(...,系统误识别率较高,安全性较低 系统优化较差,摄像头捕捉帧数较低(8-9),后台占有高,CPU利用率较高 数据保存CSV格式,安全性较低 正式版改进 1.加入TensorFlow深度学习,提高系统人脸识别安全性与准确性
前面专栏中,我们介绍了有关基于图片/视频的人脸表情识别的相关内容,也了解了通过回归的方式来理解表情的方式——基于连续模型的人脸表情识别。...由于人脸表情是最容易获取且最直观反映人的情绪状态的模式,因此在所有情绪识别研究的分支中,基于人脸表情的情绪识别是最早也是最热门的一个分支。...总结 本文分享了计算机视觉领域中围绕情绪识别主题的一些会议和相关竞赛,了解到当前国内外在情绪识别领域研究的热点。到这里,人脸表情识别专栏内容就已全部更新完毕。...由于笔者研究范围有限加上时间的原因,像基于人脸活动单元的人脸表情识别以及一些更小众的表情识别领域就没有涵盖到专栏之中。...人脸图像小组需要掌握与人脸相关的内容,学习的东西包括8大方向:人脸检测,人脸关键点检测,人脸识别,人脸属性分析,人脸美颜,人脸编辑与风格化,三维人脸重建。
本文实例为大家分享了python实现人脸签到系统的具体代码,供大家参考,具体内容如下 简易版人脸签到/签退系统 管理员可进行录入人脸操作,以及导出各类签到情况表; 普通学生只可人脸识别进行签到签退操作。...say(engine, "欢迎 "+Name+ sex[Sex]+" 签到成功 ") baseConnect.insertd(idnum,Name,StudentID,Sex) #签到表中 插入签到信息...1 导出个人签到表 2 导出时长表 3 导出信息表 4 录入人脸信息 5 退出") op = input("\n0:导出所有同学签到表 1:导出个人签到表 2:导出所有人员时长表 3:导出学生信息表...4 录入人脸信息 5 退出\n") if op == '0': baseConnect.sign()#导出签到表 say(engine, "导出签到表成功 ") pass elif op == '1'...) if sign_flag=='1' or sign_flag=='0' : break else : say(engine," 请输入正确的输入形式") say(engine, "开始人脸识别")
1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别...,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It...= 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir(...,但由于SD卡内无文件,无法匹配人脸 ?...按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。
1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像...该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。
、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0...,识别成功保存图片到本地 getVideoFromCamera(); // 2- 从本地视频文件中识别人脸 // getVideoFromFile();...// 3- 本地图片人脸识别,识别成功并保存人脸图片到本地 face(); // 4- 比对本地2张图的人脸相似度 (越接近1越相似) String basePicPath...while(i<3) { // 匹配成功3次退出 capture.read(video); HighGui.imshow("实时人脸识别...: 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。
降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸...# 根据训练的数据来对新图片进行识别的过程。...,其他可以不写 scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确 minNeighbors = 1, #为5表示有5次重叠才认为人脸存在... minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:
本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。...人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。...还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别...识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。...流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop
python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对,从而辨识身份的技术。...不过肯定的一点是,你的人脸识别首先要将人脸转化为计算机可以识别的数据,人脸识别其实就是计算机方面的数据识别。...人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等...学生在进入公寓时需要进行人脸识别,机器会进行识别。系统有两种识别方式,一是识别人像,二是进行刷卡,刷卡会将自己的信息读取,会与数据库的信息对比,也是一种识别的方式。...我们可以有这个思路,这里只是给大家简单介绍一下python的这个人脸识别库。当然也会有其他的编程语言的实现人脸识别。 后期会写出动态拍照人脸识别。
在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给...import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别...: f = open('faceimage.jpg','rb') img = base64.b64encode(f.read()) return img #上传到百度api进行人脸检测...def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸...f.close() return 1 if result['error_msg'] == 'pic not has face': print('检测不到人脸
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.LBPHFaceRecognizer_create()#LBPH人脸识别...特征图像划分为一个个单元格时,每个单元格在水平方向上的像素个数 grid_y表示将LBP特征图像划分为一个个单元格时,每个单元格在垂直方向上的像素个数 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象...) src表示输入图像 labels表示标签 label, confidence=cv2.face_FaceRecognizer.predict(src) src表示输入图像 注意:置信度评分用来衡量识别结果与原有模型之间的距离
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.FisherFaceRecognizer_create()#人脸识别...predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 10647.989937693492 算法:LDA人脸识别是一种经典的线性学习方法..., num_components[, threshold]]) num_components表示使用Fisherfaces准则进行线性判别分析时保留的成分数量,默认值是0 threshold表示进行识别时所使用的阈值
目录 1 读取图片 2 将图片灰度转换 3 修改图片尺寸 4 绘制矩形_圆 5 人脸检测 6 检测多张人脸 7 检测视频中的人脸 8 训练数据并人脸识别 8.1 训练数据 8.2 人脸识别 1 读取图片...8 训练数据并人脸识别 8.1 训练数据 import os import cv2 import sys from PIL import Image import numpy as np def getImageAndLabels...face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) # 保存文件 recognizer.write('trainer.yml') 8.2 人脸识别.../trainer.yml') # 准备识别的图片 img = cv2.imread(r'E:/girl.jpg') # 将图片缩小至原来的1/2 height, width = img.shape[:...(gray) for x, y, w, h in faces: cv2.rectangle(reSize, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人脸识别
,cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.EigenFaceRecognizer_create()#人脸识别...predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 19228.277485215305 算法:PCA人脸识别是将高维的人脸数据处理为低维数据后...(降维),再进行数据分析和处理,获取识别结果。...num_components[, threshold]]) num_components表示保留的分量个数,通常情况下,保留的分量个数为80 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象
process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): # 将人脸面部信息画出来...'q'): break video_capture.release() cv2.destroyAllWindows() 需要的第三方库 face_recogniton是世界上最简单的人脸识别库了...你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸,该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了...99.38%,它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。...代码部分 效果 识别成功 [在这里插入图片描述] [在这里插入图片描述] 识别失败 [在这里插入图片描述] 完整代码 # -*- coding: utf-8 -*- # @Time : 2019
美国公民自由联盟表示,在对亚马逊重新认知的测试中,该服务错误地将28名国会议员确定为罪犯。...系统错误地将28名国会议员的照片与罪犯面部照片进行了配对。这28人中有11个是有色人种,而他们只占国会现任议员的20%。 三位民主党国会议员在给亚马逊首席执行官杰夫贝佐斯的公开信中回应了这一测试。...“虽然面部识别服务可能提供有价值的执法工具,但该技术的功效和影响尚未完全理解,”信中写道,“特别是人们对面部识别可能对隐私和公民权利构成的危险提出了严重的担忧,特别是当它被用作政府监督的工具,以及技术的准确性及其对色彩社区的不成比例的影响时...研究显示,面部识别技术容易受到种族偏见的影响,2011年的一项研究发现,在中国,日本和韩国开发的系统在区分白人面孔方面比在东亚人面前更加困难。...从历史上看,执法部门使用的面部识别算法的准确性还有很多不足之处。最近众议院监督委员会关于面部识别技术的听证会表明,用于识别匹配的算法在15%的时间内是错误的。
该项目基于讯飞SDK实现的人脸检测,使用face++的webapi实现的人脸注册以及人脸识别。...这对于签到考勤这一场景(需要较快的识别速度、设备可能处于无网络状态)还是很不方便的,另外他们都是收费的。 所以本文将介绍另一个功能完备,性能还算不错的第三方开发工具,虹软中国,而且它是免费的。...人脸识别,我们可以理解为从一个专门保存人脸特征值的数据集合中找到最匹配的一组特征值。...人脸识别 (FR引擎) 当检测出人脸时,对人脸进行识别,如果人脸特征集合中存在该人脸信息,读取出该人脸信息及人员信息。...第三步: 经过上述的两部,我们已经成功的从图片中识别到了人脸,并且将该人脸在图片中的位置获取到了,接下来我们要做的就是使用 FR 人脸识别引擎识别该位置人脸中的特征信息。 if (!
现如今,在案件侦破,小区门禁,手机解锁等等方面,我们都需要用到人脸识别技术,这项技术应用到了很多的场景当中,对于日常的生活来说也提供了不少的便利,下面我们就将为大家介绍人脸识别技术。...,而且通过人脸识别技术,可以不易察觉,不会陷入被人伪装欺骗的地步。...虽然人脸识别技术的优点非常多,但是我们也需要注意到它的缺点,因为人类的脸部或多或少存在着一定的相似性,所以对于人脸的外形来说,它是很不稳定的,而且有些人脸识别技术还可能会导致信息的泄露。...二、人脸识别技术的原理 人脸识别是识别技术的一种,主要是通过人类的面部特征来进行身份确认,在判断出是否存在人脸之后,就会开始检测脸部的位置和大小,根据检测出来的信息,就可以提出身份特征,然后和已知的人脸之间进行对此...人脸识别技术在现在的社会中已经越来越普遍了,我们也日常的生活中随处可见人脸识别技术,有些小区也是可以通过人脸识别技术来确定身份,不过我们在进行人脸识别的过程,也要多加注意保护自己的信息。
领取专属 10元无门槛券
手把手带您无忧上云