现在很多iOS的APP没有做任何的安全防范措施,导致存在很多安全隐患和事故,今天我们来聊聊iOS开发人员平时怎么做才更安全。 一、网络方面 用抓包工具可以抓取手机通信接口的数据。...1.2 如何防范中间人攻击?...下面开始说如何防范: 1.2.1 SSL Pinning SSL Pinning的原理就是把服务端的公钥存到客户端中,客户端会校验服务端返回的证书是否和客户端保存的一致,这样就避免了中间人替换证书进行的攻击
在生物识别系统中,为防止恶意者伪造和窃取他人的生物特征用于身份认证,生物识别系统需具有活体检测功能,即判断提交的生物特征是否来自有生命的个体。...为防止恶意者伪造和窃取他人的生物特征用于身份认证,生物识别系统需具有人脸活体检测功能,即判断提交的生物特征是否来自有生命的个体。...一般人脸识别技术通行的人脸活体检测技术一般采用交互式随机动作配合的方式,如人脸左转、右转、张嘴、眨眼等,指令配合错误则认为是伪造欺骗。那么什么是交互式随机动作人脸活体检测呢?...通俗地讲,就是在人脸识别的过程中证明你确实是个“活人”,不是照片、视频或其他什么,证明你是个人,你就是你。人脸活体检测技术对攻击有多重对抗措施,下面就简单介绍一下。...随着人脸识别技术日趋成熟,商业化应用愈加广泛,然而人脸极易用照片、视频等方式进行复制,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁。
01 测量人脸识别的主要性能指标有 1.误识率(False;Accept;Rate;FAR):这是将其他人误作指定人员的概率; 2.拒识率(False;RejectRate;FRR):这是将指定人员误作其它人员的概率...02 影响人脸识别性能的因素及解决方法 (1)背景和头发:消除背景和头发,只识别脸部图象部分。...因此人脸比对有一个阈值的概念。设置相似度大于x%的时候,视为人脸比对通过,小于x%的时候,视为人脸比对不通过。设定阈值的过程就是模型评估。 阈值设定过低,则人脸比对通过率高,误报率可能也会升高。...阈值设定过高,则人脸比对通过率低,误报率可能也会降低也可能会增高。 因此在人脸识别的测试中,除了要关注通过率,还要关注误报率。这两项也可以统称为是查准率。 ?...目前人脸识别在金融、教育、景区、出入境、机场等领域已经大量应用,方便的同时也带来了一些问题,怎么做好人脸识别的测试,还是一个需要思考和深挖的课题。
人脸识别技术是近年来出现的一种基于人的脸部特征信息进行身份识别的生物特征识别技术。...与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所...人脸识别技术与其他生物特征识别技术相比,在实际应用中具有天然独到的优势:通过摄像头直接获取,可以非接触的方式完成识别过程,方便快捷。...;或者嘴部张合判别:与眨眼判别类似,要求用户张开、闭合嘴巴一到两次,人脸识别系统据此区分照片与真实人脸。...图片 基于人脸识别场景中的防欺诈解决方案,人脸活体检测技术可以有效阻挡PS换脸、视频、三维人脸模型、高清人像照片等各种不同类型的攻击。
随着大数据时代的到来,个人信息安全问题日益严峻,基于图像处理的人脸识别和检测技术得到了广泛的应用。...然而,目前人脸检测技术都是针对数量较小的人脸图像,随着大数据概念的深入,图像大数据处理将对人脸识别技术提出更高要求。...在最原始的基于人脸识别系统中,基于当前拍摄的人脸照片与预先存储的人脸照片之间的比对,来进行身份验证。...为了区分真实人脸以及照片、视频,防范人脸识别系统可能遭受的攻击,就需要应用人脸活体检测技术。...:与眨眼判别类似,要求用户张开、闭合嘴巴一到两次,人脸识别系统据此区分照片与真实人脸。
1061700625/OpenMV_Face_Recognition ''' >> author: SXF >> email: songxf1024@163.com >> description: 用LBP特征进行人脸识别...,可进行人脸注册、人脸检测与人脸识别 Pin7高电平一次,触发人脸注册;默认低电平 UART1(Pin1)输出调试信息 UART3(Pin4)输出识别结果,当识别成功后,返回“Find It...= 0: debug(res) return 1 def match(d0): # 人脸识别 dir_lists = os.listdir(...,但由于SD卡内无文件,无法匹配人脸 ?...按下F1按键,进入人脸注册模式,连续拍5张照存入SD卡(拍摄时绿灯快闪50ms,拍摄完绿灯闪1000ms) ? 再识别,可完成人脸识别(红灯闪1000ms)。
、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0...,识别成功保存图片到本地 getVideoFromCamera(); // 2- 从本地视频文件中识别人脸 // getVideoFromFile();...// 3- 本地图片人脸识别,识别成功并保存人脸图片到本地 face(); // 4- 比对本地2张图的人脸相似度 (越接近1越相似) String basePicPath...while(i<3) { // 匹配成功3次退出 capture.read(video); HighGui.imshow("实时人脸识别...: 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。
1.人脸识别的难点 用户配合度 相似性 易变形 2.人脸识别的评测方法 LFW数据集(Labeled Faces in the wild):该数据库工有13233幅图像,其中5749个人,1680人有两幅及以上的图像...该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。
降低计算强度 face_cascade = cv2.CascadeClassifier('d:\haarcascades\haarcascade_frontalface_alt.xml') # 探测人脸...# 根据训练的数据来对新图片进行识别的过程。...,其他可以不写 scaleFactor= 1.01, #控制金字塔层数,通常范围1.01~1.5 参数越小,层数越多,结果越精确 minNeighbors = 1, #为5表示有5次重叠才认为人脸存在... minSize = (1,1),#寻找人脸的最小区域 ) # 处理人脸探测的结果 print ("{0}".format(len(faces))) for(x,y,w,h) in faces:
本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。...人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。...还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别...识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。...到这里整个人脸识别的流程我们就都已经清晰的掌握了,如果没有看明白,就下载我加过注释的源码,再仔细看看代码是如何实现的。
python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对,从而辨识身份的技术。...常常在想人脸识别是如何做到,的这里面与复杂高级的数据建模,建立人脸各部分的数据模型密切相关。说白了,其实也就是算法,算法的研究,成为推动智能发展的顶梁柱。...不过肯定的一点是,你的人脸识别首先要将人脸转化为计算机可以识别的数据,人脸识别其实就是计算机方面的数据识别。...人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等...我们可以有这个思路,这里只是给大家简单介绍一下python的这个人脸识别库。当然也会有其他的编程语言的实现人脸识别。 后期会写出动态拍照人脸识别。
人脸识别是一项热门的 计算机技术研究领域,它属于生物特征识别技术,是对 生物体(一般特指人)本身的生物特征来区分生物体个体。...与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所...图片 随着人脸识别技术日趋成熟,商业化应用愈加广泛,尤其是在金融行业,人脸识别技术已逐渐用于远程开户、取款、支付等,涉及用户的切身利益,然而人脸极易用照片、视频等方式进行复制,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁...图片 随着深度学习方法的应用,人脸识别技术的识别率已经得到质的提升。...人脸识别技术与其他生物特征识别技术相比,在实际应用中具有天然独到的优势:通过摄像头直接获取,可以非接触的方式完成识别过程,方便快捷。
小石阿.90后天秤座.喜欢分享 人脸识别技术的发展,你的脸就是身份证 人脸识别以前在小编的记忆中,都是电影的情节,[ 金库!!! 安全大门!!! 收藏地下库!!!...现如今人脸识别已经越来越贴近我们的生活,那么在我们生活圈子大家知道哪些东西应用到我们的人脸识别技术吗??? 可在下方留言让大家看看你的眼力见??...如今人脸识别这些技术这么贴近生活,研发的产品也越来越多样化,作为质量保证者测试工程师一职的我们如何去测试人脸识别呢,我们简单从大方向是分析一下看下流程图 ?...02 影响人脸识别性能因素及解决方法 (1)背景和头发:消除背景和头发,只识别脸部图象部分。...目前人脸识别在金融、教育、景区、出入境、机场等领域已经大量应用,方便的同时也带来了一些问题,怎么做好人脸识别的测试,还是一个需要思考和深挖的课题。
01 测量人脸识别的主要性能指标有 1.误识率(False;Accept;Rate;FAR):这是将其他人误作指定人员的概率; 2.拒识率(False;RejectRate;FRR):这是将指定人员误作其它人员的概率...02 影响人脸识别性能的因素&解决方法 (1)背景和头发:消除背景和头发,只识别脸部图象部分。...因此人脸比对有一个阈值的概念。设置相似度大于x%的时候,视为人脸比对通过,小于x%的时候,视为人脸比对不通过。设定阈值的过程就是模型评估。 阈值设定过低,则人脸比对通过率高,误报率可能也会升高。...阈值设定过高,则人脸比对通过率低,误报率可能也会降低也可能会增高。 因此在人脸识别的测试中,除了要关注通过率,还要关注误报率。这两项也可以统称为是查准率。 ?...目前人脸识别在金融、教育、景区、出入境、机场等领域已经大量应用,方便的同时也带来了一些问题,怎么做好人脸识别的测试,还是一个需要思考和深挖的课题。
本发明涉及生物特征识别,特别是涉及人脸识别中的特征建模方法。...背景技术: 人脸识别技术一般包括四个组成部分,分别为人脸图像采集、人脸图像预处理、人脸图像特征提取以及匹配与识别,具体来说: 人脸图像采集及检测是指通过摄像镜头等视频图像采集装置采集包括有人脸的视频或图像数据...人脸识别过程受到很多因素的干扰,准确地提取人脸中合适的关键特征点是进行正确识别的关键。...技术实现要素: 本发明所要解决的技术问题是如何提高人脸情绪识别的准确度,具体的: 本发明实施例提供了一种人脸识别中的特征建模方法,包括步骤: S11、预设22个关键特征点;22个关键特征点具体包括每个眉毛的两个角点...图1为本申请中所述人脸识别中的特征建模方法的步骤示意图; 图2为本申请中所述人脸识别中的特征建模方法的又一步骤示意图。
在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给...import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别...: f = open('faceimage.jpg','rb') img = base64.b64encode(f.read()) return img #上传到百度api进行人脸检测...def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸...f.close() return 1 if result['error_msg'] == 'pic not has face': print('检测不到人脸
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.LBPHFaceRecognizer_create()#LBPH人脸识别...特征图像划分为一个个单元格时,每个单元格在水平方向上的像素个数 grid_y表示将LBP特征图像划分为一个个单元格时,每个单元格在垂直方向上的像素个数 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象...) src表示输入图像 labels表示标签 label, confidence=cv2.face_FaceRecognizer.predict(src) src表示输入图像 注意:置信度评分用来衡量识别结果与原有模型之间的距离
cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.FisherFaceRecognizer_create()#人脸识别...predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 10647.989937693492 算法:LDA人脸识别是一种经典的线性学习方法..., num_components[, threshold]]) num_components表示使用Fisherfaces准则进行线性判别分析时保留的成分数量,默认值是0 threshold表示进行识别时所使用的阈值
目录 1 读取图片 2 将图片灰度转换 3 修改图片尺寸 4 绘制矩形_圆 5 人脸检测 6 检测多张人脸 7 检测视频中的人脸 8 训练数据并人脸识别 8.1 训练数据 8.2 人脸识别 1 读取图片...8 训练数据并人脸识别 8.1 训练数据 import os import cv2 import sys from PIL import Image import numpy as np def getImageAndLabels...face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) # 保存文件 recognizer.write('trainer.yml') 8.2 人脸识别.../trainer.yml') # 准备识别的图片 img = cv2.imread(r'E:/girl.jpg') # 将图片缩小至原来的1/2 height, width = img.shape[:...(gray) for x, y, w, h in faces: cv2.rectangle(reSize, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人脸识别
,cv2.IMREAD_GRAYSCALE))#原始图像 labels=[0,0,1,1]#图像标签 recognizer=cv2.face.EigenFaceRecognizer_create()#人脸识别...predict_image) cv2.waitKey() cv2.destroyAllWindows() label= 1 confidence= 19228.277485215305 算法:PCA人脸识别是将高维的人脸数据处理为低维数据后...(降维),再进行数据分析和处理,获取识别结果。...num_components[, threshold]]) num_components表示保留的分量个数,通常情况下,保留的分量个数为80 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象
领取专属 10元无门槛券
手把手带您无忧上云