人脸属性编辑再添力作「StyleFlow」,1月7日刚刚开源,上周末我立马就试了一下。
下午的时候,配好了 OpenCV 的 Python 环境,OpenCV 的 Python 环境搭建。于是迫不及待的想体验一下 opencv 的人脸识别,如下文。 必备知识 Haar-like Haar-like 百科释义。通俗的来讲,就是作为人脸特征即可。 Haar 特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。 opencv api 要想使用 opencv,就必须先知道其能干什么,怎么做。于是 AP
机器之心专栏 机器之心编辑部 浙江大学计算机辅助设计与图形学国家重点实验室和浙江大学-腾讯游戏智能图形创新技术联合实验室的研究者们提出了训练 StyleGAN 隐空间中精细的分离边界的方法,仅用一个向量就能在保持其它面部特征不变的情况下进行语义特征编辑。该方法在去除双下巴等应用中效果显著。 随着社交网络、直播以及短视频的流行,为了给别人留下更好的印象,人脸编辑「美颜」的应用范围越来越广泛,不断发展的科学技术使人脸编辑产生了非常多的研究分支。其中,生成对抗网络(GAN)的隐空间一直是个热点问题,现在越来越多的
AI 科技评论按:2018 年 4 月 14 日-15 日,中国图象图形学学会围绕「生物特征识别」这一主题,在中科院自动化所举办第四期「CSIG 图像图形学科前沿讲习班」。
近日,来自中科院计算所的人工智能国家队中科视拓宣布,开源商用级SeetaFace2人脸识别算法。
包括8351张狗图像,分为训练(6680)、验证(835)和测试(836)数据集,以及13233 张人脸。
改变人脸的各种属性,如发色、性别、眼镜等,是计算机视觉中的标准任务之一。在给定的人脸图像中,人脸编辑由于其各种应用和娱乐性而不断受到关注。特别地,随着最近生成对抗网络( Generative Adversarial Network, GAN)模型的进步,我们可以简单地通过操作给定图像的潜在特征来完成这一任务。此外,最近,许多基于扩散概率模型( Diffusion Probabilistic Model, DPM )的人脸图像编辑方法也被提出,这些方法显示出高质量和灵活的操作性能。
笔者是从传统图像算法开始进入计算机视觉行业的,那一批人基本上都是从人脸图像和文本图像开始学,而如今很多计算机视觉从业者却从来没有接触过人脸图像相关的算法,或许真的是时代变了吧。
本文主要介绍OpenCV4.5.4中人脸识别模块的使用和简易人脸识别系统的搭建,供大家参考。
之前看过日本东京的BBT大学使用的「Newme」机器人代替学生参加毕业典礼,就问能不能来点儿阳间的东西?
人脸表情编辑指的是对图像中人脸的表情进行变换和修改。通常,我们希望这种编辑方法是足够方便、可控的。方便,在于我们尽量设置少量的条件,操作简单;可控,在于我们可以精确地控制需要编辑的部分与编辑的结果。已有的基于学习的方法中,使用生成式模型的方法为近年来较常用的方法,然而要么他们的方法是基于人脸的关键点合成特定的表情,要么是基于代表了情绪类别的离散向量,这两种条件通常具有用户参与编辑的方式不够简单(人脸关键点),要么生成结果单一、不可细粒度控制(离散向量)。
高真实感且精确可控的三维人脸建模是数字人构建中的重要问题之一。目前,使用现有的基于网格的人脸建模方法需要专业的人员使用复杂的软件并投入大量的时间和精力,且实现逼真的人脸渲染结果较为困难。
特征点检测的应用有很多种,比如人脸特征点检测,人体骨架特征点检测,人体运动特征点检测等。今天我就以人脸特征点为例,通过卷积神经网络来实现检测。
想要个性化设计高真实感的三维立体人脸,却发现自己并不熟悉专业的设计软件?三维人脸编辑方法 NeRFFaceEditing 提供了新的解决方案,即使不会三维建模,也能自由编辑高真实感的立体人脸,建模元宇宙中的个性化数字肖像!
2015年我出版了个人第一本关于图像处理方面的书籍《Java图像处理-编程技巧与应用实践》,这本书主要是从理论与编码上面详细阐述了图像处理基础算法以及它们在编码实现上的技巧。一转眼已经三年过去了,在这三年的时光里我无时无刻都在关注图像处理与计算机视觉技术发展与未来,同时渐渐萌发了再写一本图像处理相关技术书籍的念头,因为《Java图像处理-编程技巧与应用实践》一书主要不是针对工程应用场景,读者在学完之后很难直接上手开始做项目,所以把第二本书定位为工程实战书籍类型,可以帮助大家解决工程与项目实际技术问题。OpenCV是英特尔开源出来的计算机视觉框架,有着十分强大的图像与视频分析处理算法库。借助OpenCV框架,Android程序员可以在不关心底层数学原理的情况下,解决人脸检测、OCR识别、AR应用开发,图像与视频分析处理,文本处理等Androd开发者经常遇到问题,考虑这些真实需求,本着从易到难的原则,列出了提纲,得到机械工业出版社 杨绣国编辑 肯定与大力支持,于是才有《OpenCV Android开发实战》一书的写作与出版。
專 欄 ❈Kangvcar,Python爱好者,简书活跃作者,欢迎关注,打赏支持。❈ 环境要求: Ubuntu17.10 Python 2.7.14 环境搭建: 1、安装 Ubuntu17.1
今天向大家介绍一篇今天新出的论文 High Resolution Face Age Editing,该文提出一种简单的方法实现了高分辨率的人脸年龄编辑,效果惊艳,代码也开源了。
人工智能技术的飞速发展给各行各业都带来了深远的影响,AI已被视为企业提升运营效能、应对市场竞争的必经之路。然而对于一些企业而言,让AI真正实现落地和应用,并且创造价值,仍是一件需要努力的事情。
最近看了很多人脸识别loss相关和GAN相关的paper,但是没有提纲挈领的把这些串起来。于是,一个小姐姐分享给我了这篇论文,阅读了一下,确实比较经典,很全面。在这里,将论文内容结合我自己的理解和在工作中进行的探索展开,分享给大家。
今年 7 月,2019 腾讯广告算法大赛「终极之战」在深圳腾讯滨海大厦顺利举行。本次总决赛现场,腾讯广告高级应用研究员石瑞超为大家带来了题为《广告场景下的 AI 视觉算法应用》的演讲。视觉算法应用于广告创意的三个阶段包括广告创建、广告审核及广告播放。研究员石瑞超为我们展示了 AI 视觉算法在解决广告落地中痛难点的优势与应用方法。以下是他的分享内容,AI 开发者做了不改变原意的整理与编辑。
作者:Haonan Qiu、Chaowei Xiao、Lei Yang、Xinchen Yan、Honglak Lee、Bo Li
人脸检测和识别是计算机视觉中的一个重要应用领域,它可以识别人脸的位置、姿态、表情等信息,并对这些信息进行分类和识别。在实际应用中,人脸检测和识别被广泛应用于安防监控、人机交互、图像搜索、广告投放等领域。
雷锋网按:本文内容来自云从科技创始人、中国科学院百人计划周曦博士在硬创公开课的分享。在未改变原意的基础上进行了编辑整理。 明明可以靠脸吃饭”这句话不再只是一个网络段子,随着人脸识别技术的普及,不光可以靠“刷脸”支付吃喝玩乐的花费,现在连银行办业务都可以“刷脸”了。 最近两年,国内各家中小银行和四大行地方分行已经陆续将人脸识别技术用于日常业务,前几日,四大行中的农行更是首先在全国范围应用人脸识别技术。 但是,银行业务光凭“刷脸”真的靠谱吗?本期公开课特意邀请到云从科技创始人、图像识别领域权威周曦博士为大家答疑
主题驱动的文本到图像生成,通常需要在多张包含该主题(如人物、风格)的数据集上进行训练,这类方法中的代表工作包括 DreamBooth、Textual Inversion、LoRAs 等,但这类方案因为需要更新整个网络或较长时间的定制化训练,往往无法很有效地兼容社区已有的模型,并无法在真实场景中快速且低成本应用。而目前基于单张图片特征进行嵌入的方法(FaceStudio、PhotoMaker、IP-Adapter),要么需要对文生图模型的全参数训练或 PEFT 微调,影响原本模型的泛化性能,缺乏与社区预训练模型的兼容性,要么无法保持高保真度。
12月11日,2021年腾讯犀牛鸟精英科研人才培养计划正式对外发布。计划截止申报时间为2021年1月28日24:00。 本年度精英科研人才计划将延续人工智能领域顶尖科研人才培养,发布包含机器人、AI医疗、量子计算、智慧城市等12个前沿热议方向,71项研究课题。入选学生将由校企导师联合制定专属培养计划,并获得3个月以上到访腾讯开展科研访问的机会,基于真实产业问题及海量数据,验证学术理论、加速成果应用转化、开阔研究视野。同时项目组将为学生搭建线上和线下学习、交流平台,帮助学生挖掘更多潜能。 本期小编整理了该计
本文介绍了如何使用一行代码实现人脸识别,包括环境要求、安装依赖、准备数据、训练模型、使用命令行工具进行识别等步骤。同时,还介绍了如何使用dlib库进行人脸识别,包括编译dlib、安装face_recognition库等步骤。通过示例,展示了如何使用face_recognition库进行人脸识别,包括识别出人脸特征、识别人脸鉴定等步骤。同时,还介绍了如何使用face_recognition库进行美颜处理。
ZOLOZ Deeper,蚂蚁数科ZOLOZ出品。我们日常的支付宝刷脸支付,正是依托于他们技术支撑。
3D 高斯分布 (3D GS) 最近作为显式辐射场和计算机图形领域的一项变革性技术而出现。这种创新方法的特点是利用了数百万个 3D 高斯函数,它与神经辐射场 (NeRF) 方法有很大不同,神经辐射场 (NeRF) 方法主要使用隐式的基于坐标的模型将空间坐标映射到像素值。3D GS 凭借其明确的场景表示和可微的渲染算法,不仅保证了实时渲染功能,而且还引入了前所未有的控制和可编辑性水平。这使得 3D GS 成为下一代 3D 重建和表示的潜在游戏规则改变者。在本文中,我们首次系统概述了 3D GS 领域的最新发展和关键贡献。我们首先详细探讨 3D GS 出现背后的基本原理和驱动力,为理解其重要性奠定基础。我们讨论的一个焦点是 3D GS 的实际适用性。通过促进实时性能,3D GS 开辟了从虚拟现实到交互式媒体等众多应用程序。对此进行了补充,对领先的 3D GS 模型进行了比较分析,并在各种基准任务中进行了评估,以突出其性能和实用性。该调查最后确定了当前的挑战并提出了该领域未来研究的潜在途径。通过这项调查,我们的目标是为新手和经验丰富的研究人员提供宝贵的资源,促进在适用和明确的辐射场表示方面的进一步探索和进步。
近些年来,随着深度学习和对抗生成网络的兴起,图像生成领域取得了巨大的进步。然而,对于计算机视觉领域的生成问题,并非只有生成对抗网络这样唯一的解决途径。在SFFAI22我的演讲中,我们将以两篇工作为例,介绍常见的生成模型,以及对于生成模型中的不同问题我们的解决方案:
我们运用Python 3.8.1版本,爬取网络数据,基于卷积神经网络(CNN)的图像处理原理,搭建口罩识别技术训练集,构建人脸识别系统,最终建立高校师生行踪查询管理系统。
TFace是由腾讯优图实验室研发的可信人脸算法研究项目,重点关注人脸识别、人脸安全、人脸质量等技术领域,通过开源自研的方法,方便研究人员快速复现我们的工作。自开源以来,本项目在业界获得了广泛关注,最近TFace发布了新版本,在优化了原有人脸识别模块的同时,新增了人脸安全模块。
为什么要做这个小程序? 疫情原因,2020年的毕业季也不同了。很多毕业生没有举办正式的毕业典礼,也没有照毕业照,个人觉得这是人生的一大遗憾。为了弥补这一遗憾,我尝试用云开发快速实现一个AI云毕业照小程序,纪念我们的青春年华。 功能实现的思路是:用户上传人脸照片即可生成学士服云毕业照,小程序支持学士服、硕士服、博士服等个性服装,而且可以通过云开发CMS管理系统随时随地管理小程序云开发内容数据。 为什么选择了云开发? 云开发 CloudBase 是腾讯云首创的云原生一体化开发环境和工具平台,为开发者提供高
机器之心专栏 浙江大学计算机辅助设计与图形学国家重点实验室 来自浙江大学计算机辅助设计与图形学国家重点实验室的研究者,提出了一个鲁棒且易于实现的基于视频序列的人脸胖瘦参数化方法。即使在侧脸、长发、戴眼镜及轻微遮挡等极端情况下,该方法依旧能够取得连续稳定的结果。 短视频的流行催生了基于视频的人脸编辑需求。尽管基于图像的人脸编辑方法已经比较成熟,但直接将基于图像的编辑方法应用于人脸视频通常会产生不稳定、不连续的结果。 浙江大学计算机辅助设计与图形学国家重点实验室在人脸胖瘦参数化研究领域有着较为丰富的经验,他们曾
博雯 发自 凹非寺 量子位 报道 | 公众号 QbitAI 多么“平平无奇”的一个换脸视频: DeepFakes等一众换脸神器对此纷纷表示:就这? 但要是从网上的电影场景中,随意抓一把人物图像丢进去呢? 如果要换的这张脸正好在死亡角度,还做了个特别夸张的表情(或者干脆就是个表情包)呢? 水就有点深了哈。 这时,由上交大和腾讯一起搞出来的换脸框架SimSwap表示:让我来,我把握得住! 任意人脸都能换 一直身居换脸界C位的DeepFakes是怎么换脸的呢? 对于同一人脸的大量图片进行分析并提取特征,
classification也要训练的,和auto-encoder一起训练,介样练:
南京江宁区玉堂花园小区南门,一位戴着口罩的居民走到门禁前,系统很快通过人脸识别识别出他的身份和健康状况,闸机门自动打开。
来源 | 腾讯SaaS加速器首期项目-WakeData ---- 疫情之下,公共场所需要对人流是否佩戴口罩、是否正确佩戴口罩进行严格督察。而此项工作冗杂琐碎,为降低人力成本、提高人员流通的效率,人工智能技术正被应用到疫情防控工作中。 许多科技公司都积极研发并开放了口罩识别模型,WakeData亦在人脸识别模型基础上开发了口罩识别模型,可快速识别受检者是否正确佩戴口罩,准确率达98.5%,高于百度基于PyramidBox-Lite优化的口罩识别模型的90.4%(此二项数据均基于同一个测试集检测得到)。
推荐补充阅读:『Python开发实战菜鸟教程』工具篇:手把手教学使用VSCode开发Python
2017年12月,一位名为“Deepfakes”的用户在全球流量排名第四的国际互联网社区“Reddit”上发布了一段好莱坞女星盖尔·加朵的伪造人脸视频,掀起了一阵轰动,这一事件作为开端,标志着人脸深度伪造技术的兴起,而该用户的用户名也被引用成为了这一类技术的代名词“Deepfake[1]”。 因此,Deepfake指代人脸的深度伪造,即将目标视频人物的脸替换成指定的原始视频人脸,或让目标人脸重演、模仿原始人脸的动作、表情等,从而制作出目标人脸的伪造视频。
---- 新智元报道 编辑:LRS 【新智元导读】用GAN模型进行图像合成有一个显著缺点,就是生成的图像不可控制,经常是摘个眼睛把性别都变了。最近Adobe提出新一代GAN模型,能够自由控制35个人脸属性的变化,而不会互相干扰。 图像合成中的一个重要问题就是图像内的纠缠(entanglement)问题。 比如把一个人脸上的胡子全都自动去掉,或者完美地贴上胡子,最后生成的图片或多或少都有违和感,因为胡子和人脸存在某种纠缠的关系。 并且不同物体间的合成、去除的难度也不尽相同。 举几个生活中的例子就很
Java是一门面向对象的编程语言,可以通过调用OpenCV库来实现人脸检测功能。OpenCV是一个开源计算机视觉库,其中包含许多用于图像处理和分析的函数和模块。下面我们将学习如何使用Java和OpenCV来实现人脸检测和标记出来。
十八、文字生成图像 55、 DAE-GAN: Dynamic Aspect-aware GAN for Text-to-Image Synthesis 文本转换生成图像是指,从给定的文本描述中生成图像,保持照片真实性和语义一致性。此前方法通常使用句子特征嵌入去生成初始图像,然后用细粒度的词特征嵌入对初始效果进行细化。 文本中包含的“aspect”信息(例如,红色的眼)往往连带几个词,这对合成图像细节信息至关重要。如何更好地利用文本到图像合成中的aspect信息仍是一个未解决的挑战。本文提出一种动态 Asp
今天和大家说的是关于人脸识别及人类部件解析。下面先给大家展示下具体背景及效果图,然后我们开始展开讲解。
中国图象图形学学会围绕「生物特征识别」这一主题,在中科院自动化所成功举办了第四期「CSIG 图像图形学科前沿讲习班」。
人脸识别很难吗? -- Kangvcar 本文导航 ◈ 环境要求00% ◈ 环境搭建03% ◈ 实现人脸识别19% ◈ 示例一(1 行命令实现人脸识别):19% ◈ 示例二(识别图片中的所有人脸并显示
---- 点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 新智元 授权 【导读】用GAN模型进行图像合成有一个显著缺点,就是生成的图像不可控制,经常是摘个眼睛把性别都变了。最近Adobe提出新一代GAN模型,能够自由控制35个人脸属性的变化,而不会互相干扰。 图像合成中的一个重要问题就是图像内的纠缠(entanglement)问题。 比如把一个人脸上的胡子全都自动去掉,或者完美地贴上胡子,最后生成的图片或多或少都有违和感,因为胡子和人脸存在某种纠缠的关系。 并且不同物体间的合成、去除的难度也不尽
opencv官网下载windows安装包 https://opencv.org/releases/ 选择最新版4.1.1 下载完成后是一个opencv-4.1.1-vc14_vc15.exe,双击安装。
声纹识别(又称说话人识别)是从说话人发出的语音信号中提取声纹信息,并对说话人进行身份验证的一种生物识别技术。简单来说,声纹识别技术可以“确认说话人是谁”。我们说话的时候,每个人的发音器官、发音通道和发音习惯上都有个体差异,声纹识别技术就是为了识别出说话人之间的这些差异。需要注意的是,声纹识别不同于常见的语音识别 [1]:
机器之心专栏 作者:网易互娱AI Lab 网易互娱 AI Lab 提出了一种基于单幅图片的实时高分辨率人脸重演算法,分别在台式机 GPU 和手机端 CPU 上支持以实时帧率生成 1440x1440 和 256×256 分辨率的人脸重演图像。 近年来,面部重演 (Face Reenactment) 技术因其在媒体、娱乐、虚拟现实等方面的应用前景而备受关注,其最直接的帮助就是能够帮助提升音视频的制作效率。 面部重演算法是一类以源人脸图像作为输入,可以将驱动人脸的面部表情和头部姿态迁移到源图像中,同时保证在迁移
这几年,AI 模型在特效方向的技能似乎已被拉满。因此,我们在有生之年见到了会说话的蒙娜丽莎、cos 油画的周杰伦以及可以让人一秒变秃的「东升发型生成器」。但是,这些技术似乎在使用层面都不太「接地气」,很少有人将其做成「一键生成」类应用放到手机上,实时类应用就更少了。
领取专属 10元无门槛券
手把手带您无忧上云