小程序体验师:杨景云 高考结束、暑假即将来临,虽说天气越来越热了,但还是按耐不住一颗想要出去的心呐。
在本文中,在数据科学学习之旅中,我经常处理日常工作中的时间序列数据集,并据此做出预测
随着技术的快速发展和人们生活水平的不断提升,传统的零售模式已经难以满足消费者的需求,而且传统的运营模式需要进行重构。京东提出了无界零售的概念,对于前端门店用户体验来说,需要用运营技术能力来重构整体的购物体验,并通过数字化数据资产的沉淀来反向改进门店运营和用户体验。本文以京东时尚数字化门店为样板,介绍门店的数字化升级及体验升级。
近日,一则探讨Clearblue数字妊娠测试仪的推文登上了Twitter热搜榜。用户Xtoff称他妻子正在验证自己是否怀孕,最初是用试纸,每条只需20美分。她发现自己怀孕后很高兴,但是还想要一些“更准确的”数据测试。
7月12日-7月14日,2019第四届全球人工智能与机器人峰会(CCF-GAIR 2019)于深圳正式召开。峰会由中国计算机学会(CCF)主办,雷锋网、香港中文大学(深圳)承办,深圳市人工智能与机器人研究院协办,得到了深圳市政府的大力指导,是国内人工智能和机器人学术界、工业界及投资界三大领域的顶级交流博览盛会,旨在打造国内人工智能领域极具实力的跨界交流合作平台。
人体姿态分析/行为分析/动作识别AI算法,是一种利用人工智能技术对人体行为进行检测、跟踪和分析的方法。通过计算机视觉、深度学习和模式识别等技术,可以实现对人体姿态、动作和行为的自动化识别与分析。
随着计算机视觉技术与深度学习的发展,AI智能检测与识别技术也越来越广泛地应用到社会生活的各个方面。在短短几年内,深度学习算法已经在处理图像及分类等方面,取得了可观的成绩,并且开始逐步代替人工在某些场景中进行使用,比如安防视频监控等。
随着计算机视觉技术和安防监控技术的不断发展,基于AI算法的人体姿态识别技术也得到了广泛的应用。然而,传统的安防监控系统通常只局限于简单的视频监控等功能,无法准确地识别人体的姿态,使得一些安防监控存在着一定的漏洞和不足之处。
论文名称:Re-Identification Supervised Texture Generation
“AI跳绳”是近期某钉应用新发布运动健康较火热的轻量应用。主要用于运动健康、教育打卡等应用上的娱乐游戏,为了扩展相关领域应用和娱乐,提交运动数据,当做“课程作业”,老师也能在后台查阅相关数据,作业数据提交,任务提交等场景,结合抗疫,提升抵抗力,互动排行榜等激发学生和运动学员的参与性和积极性等作用;;
【导读】6 月 16--20 日,计算机视觉与模式识别领域顶会 CVPR 2019 在美国长滩举行。每年的 CVPR 盛会除了精彩的论文分享、Workshop 与 Tutorial,还会举办多场涵盖计算机视觉各子领域的专项比赛,竞争亦是非常激烈。在此次人体姿态估计和人体分割比赛中,字节跳动的两个团队榜上有名,收获两个冠军、一个亚军。
智能监控人体行为分析系统借助计算机视觉分析+边缘计算技术,利用现场已有的摄像头对监控画面中人员行为进行实时分析预警抓拍,智能监控人体行为分析系统能够分析和鉴别基本上姿态,包含“抽烟识别”,“跌倒监测”,“打电话识别”,“睡岗识别”,“不穿反光衣不戴安全帽以及安全带识别”,“离岗识别”,“玩手机识别”等。
腾讯云神图·人体分析(Body Analysis)基于腾讯优图领先的人体分析算法,提供人像分割、人体检测、行人重识别(ReID)等服务。支持识别图片或视频中的半身人体轮廓,并将其与背景进行分离;支持通过人体检测,识别行人的穿着、体态等属性信息,实现跨摄像头跨场景下行人的识别与检索。可应用于人像抠图、背景特效、行人搜索、人群密度检测等场景。
我们可以通过深度学习,检测到一个人,但是那个人在做什么我们不知道。所以我们就想让神经网络既检测到人,又知道他在做什么。也就是对这个人的行为进行识别。
随着深度学习推理技术的不断发展,让小型设备运行深度学习成为可能,阿里体育等IT大厂,推出的“乐动力”、“天天跳绳”AI运动APP,让云上运动会、线上运动会、健身打卡、AI体育指导等概念空前火热。那么,能否将这些在APP成功应用的场景搬上微信小程序,分享这些概念的红利呢?本系列文章就带您一步一步从零开始开发一个AI运动小程序,本系列文章将使用“AI运动识别”小程序插件,插件详情可以前往微信服务市场搜索相应插件。
在进行运动和姿态识别时,离摄像头太近,则无法取得全身关键点;若离摄像头太远,则人体图像太小,关键点将混成一团,识别效果太差,如下图所示:
摘要:本篇从理论到实践分享了基于PoseNet算法的人体姿势相似度识别项目。首先介绍了项目背景,因为部门搞活动需要大家去模仿夸张搞笑的表情和姿势来提升活动的可玩性,所以需要利用CV算法对图片进行相似度打分;然后详细讲解了人体姿势相似度识别算法,主要包括基于PoseNet算法来识别姿势和计算姿势相似度两个流程;最后基于已有的开源项目进行二次开发实现了人体姿势相似度识别项目。对于以前从未接触过CV项目的我来说既是挑战也是契机。因为之前主要做NLP相关的项目,而实际业务场景中经常会有NLP和CV交叉相关的项目,所以就需要对CV也有一定的了解。通过这个项目相当于慢慢入了CV的门,最终的目标是不变的,将更多更好的机器学习算法落地到实际业务产生更多的价值。
经过上一章的讨论相信你已经被猿人工厂君恶补了一波促销的业务知识。促销是一个高风险的系统,因为一个电商网站的销售手段更多是以促销的形式进行的。所谓高风险,业务上就很高,错误的促销设置会带来巨额的亏损。今天,我们一起来聊一聊促销的促销系统的思考和设计。
视频帧是指构成视频图像的一帧一帧的画面,每一帧都是静态的图像,连续的帧构成了视频的动态画面。视频帧通过视频编码器进行压缩,以减少传输带宽和存储空间的需求。
曾经有人跟小巴说过这么一句话,剪辑设计吃苦受累,抠图抠到索然无味,提案提到让人崩溃。特别是对于设计公司、影视制作等需要视频剪辑的公司来说,相信很多人都为抠图、抠像这事心力交瘁过,网上抠图教程一大堆,辛苦学了一个月却什么都没学出来,只能对着屏幕长唉短叹。
日本人多次犯规,裁判却视而不见,这是对所有参赛选手的不公。在日本举行奥运会就要护着日本?
腾讯云AI团队联合腾讯优图、AILab、微信智聆、微信智言等实验室,帮助合作伙伴和客户高效打造针对性的解决方案,助力各行各业的数字化和智能化转型。 6月腾讯云神图、语音识别、NLP、语音合成更新全新功能;语音识别优化了核心性能。 腾讯云神图·人体分析 人体关键点识别服务发布,可识别出图片中的人体,并输出14个关键点位置。 人体属性识别服务发布,可以识别图片中人体的年龄、性别、朝向、是否有包、着装等,可有效降低视频搜索成本。 人体分析官网demo已上线,用户可以在官网直观体验人体分析产品功能、效果。 语
作者 | 李秋键 出品 | AI科技大本营(ID:rgznai100) 引用 人体行为识别是计算机视觉及机器学习方面的热门研究领域。它在对视频中的人类行为进行运动分析、行为识别乃至延伸至人机交互领域都有着非常广泛的应用。研究初期,人体行为识别主要是以基于静态图像为研究对象。通过提取静态图像中的人体动作特征并对动作进行分类。然而仅基于静态图像来进行识别人体行为的局限性在于人体行为是连续、动态的,单凭一张静态图像无法进行判断识别。而基于视频为研究对象,可以将视频看作连续静态图像的时间序列。近两年,很多基于视频为
PoseC3D 是一种基于 3D-CNN 的骨骼行为识别框架,同时具备良好的识别精度与效率,在包含 FineGYM, NTURGB+D, Kinetics-skeleton 等多个骨骼行为数据集上达到了 SOTA。
训练CNN网络,以从所有检测部位中选取最具描述属性的人体部分;并结合整体人体作为归一化的姿态深度表示.
工厂人员作业行为动作识别检测算法通过SVM+R-CNN深度学习算法框架模型,工厂人员作业行为动作识别检测算法实时识别并分析现场人员操作动作行为是否符合SOP安全规范流程作业标准,如果不符合则立即抓拍告警提醒。人员作业行为动作识别检测算法首先基于R-CNN进行人体检测,之后并对其进行追踪,并以相同的帧率生成MHI。之后,将所有边界框映射到由相同RGB图像序列生成的相应MHI,并在边界框中提取每个子MHI的HOG特征,最后使用SVM进行分类。
基于人体骨架的行为识别是一个重要而且具有挑战性的计算机视觉任务。人体图像视频不仅包含了复杂的背景,还有光照变化、人体外貌变化等不确定因素,这使得基于图像视频的行为识别具有一定的局限性。相比图像视频,人体骨架视频可以很好地克服这些不确定因素的影响,所以基于人体骨架的行为识别受到越来越多的关注。人体骨架序列不仅包含了时序特征,而且还包含了人体的空间结构特征,如何有效地从人体骨架序列中提取具有判别性的空间和时间特征是一个有待解决的问题。我们提出了Skeleton-Based Action Recognition with Spatial Reasoning and Temporal Stack Learning,并发表在ECCV18上。
Shopify Boost主题通过将店内的购物体验搬到网上来推动销售。多种布局、创造性地使用空间、促销图像链接和价格标签风格的标签,使顾客参与其中,并在你的商店中移动,直到他们准备购买。适合宠物用品、玩具和游戏、服装、体育和娱乐、珠宝和饰品、书籍、音乐和视频、艺术和工艺品、婴儿和儿童
新智元报道 来源:MIT CSAIL 编辑:闻菲、肖琴 【新智元导读】MIT计算机与人工智能实验室的研究人员开发了一种基于Wi-Fi的人体姿态估计系统,用AI教会Wi-Fi“穿墙透视”,隔着墙也能
AI 科技评论按:是否为了简单的抠图功能,还在苦苦修炼 Photoshop 大法?即使修炼成功了,是否觉得在抠图这件事情上花费的时间依然太多?如今一个名叫 remove.bg 的工具可以免除你的这种烦恼,只要上传照片后点击确认,5 秒钟后即可获得一张透明无背景的主体照,而且在使用上完全免费。
上一篇我们介绍了运动识别中,如何实现对人与摄像头的远近预检,以提供识别率和体验。在我们实际的运动应用场景中,为了准确识别到相关运动的关键姿态点,一般会指定视角,如跳绳、开合跳需要面或背朝相机,而且像俯卧撑、仰卧起坐则需要左右侧对像相机,以获得最佳的识别率和体验。
本文将介绍一种基于特征分离的通用人类姿态特征的学习算法 Unsupervised Human 3D Pose Representation with Viewpoint and Pose Disentanglement。
人体姿态识别是计算机视觉领域的重要研究课题之一,它对于人机交互、虚拟现实、体育分析等应用具有广泛的潜在价值。OpenPose是一种广为人知的开源人体姿态估计系统,它能够从图像或视频中准确地检测并估计人体的关键点位置。然而,为了进一步提升姿态估计的精度和稳定性,近期推出的OpenPose DW(Deep and Wide)架构在关键点识别方面取得了显著进展。
传统体温计、体温枪等测温方式需要大面积、近距离接触,既危险又低效。在 AI、物联网等技术的发展与支撑下,红外体温检测仪首先是高效精准排查的第一层保护网,同时又保证了在全面排查下出行的高效性。
要实现AI运动计时、计数,要解决主要技术问题有:视频抽帧、视频人体检测、姿态识别、计时计数算法,其中最主要的也是技术前提的便是人体识别检测,实现上面的技术,便是一个完整的AI运动解决方案了。
区域入侵/周界报警入侵检测技术是TSINGSEE青犀智能分析平台推出的一种视频监控系统,可检测划定区域内是否有可疑人员并且在检测出这样的事件时生成警报。
明敏 丰色 发自 凹非寺 量子位 | 公众号 QbitAI 现在,只用WiFi就能“看”到你在房间里干啥了…… (你…干…嘛……啊啊啊啊) 多人追踪也是so easy: 过程中完全不需要拍下图像、不需要摄像头。 输入的仅是WiFi一维信号,输出则是三维人体姿态。 两台路由器即可搞定!换算成本都不到500块。 而且还不受环境光线、目标被遮挡的影响,效果接近于基于2D图像进行识别的方法。 啊这,难道说WiFi能“看到”我?更进一步……WiFi能监视我?? OMG,蝙蝠侠剧情要照进现实了?? 要知道在《
如今说到体感游戏,大家一定都不陌生,比如微软的 Kinect、任天堂的 Switch,都曾是游戏业的革命性产品。而另一款网红产品—抖音,也在去年底上线过一个“尬舞机”的音乐体感游戏(现在成了隐藏功能):
随着人工智能检测识别技术与视频处理技术的不断融合,应用场景也不断随之扩大,TSINGSEE青犀视频近期也发布了基于AI智能检测识别技术的硬件设备——智能分析网关。本设备内置多种AI算法,可对实时视频中的人脸、人体、物体等进行检测、跟踪与抓拍,支持人体检测、区域入侵检测、口罩佩戴检测、安全帽佩戴检测以及多种扩展算法。
随着计算机学科与人工智能的发展和应用,视频分析技术迅速兴起并得到了广泛关注。视频分析中的一个核心就是人体行为识别,行为识别的准确性和快速性将直接影响视频分析系统后续工作的结果。因此,如何提高视频中人体行为识别的准确性和快速性,已成为视频分析系统研究中的重点问题。
AI算法模型训练是指利用大量的数据以及特定的算法来训练出一个能够完成任务的计算模型。在进行AI算法模型训练时,通常需要经过以下几个步骤:
本文作者 Liqian Ma,他为 AI 科技评论撰写了他作为第一作者被 CVPR 2018 录用的 Spotlight 论文解读稿件。
在互联网时代,推荐系统无处不在。不仅可以向用户推荐实体商品,还可以推荐电影、歌曲、新闻报道、酒店旅行等,为用户提供量身定制的选择。这些系统中有许多都涉及了协同过滤——根据其他相似用户的偏好向用户推荐 item。推荐系统的背后还用到了包括矩阵分解、邻域方法以及各种混合方法。
现在,MIT CSAIL的一群科学家,就用AI构建了一双透视眼。你在墙后的一举一动,它就都能看见。这项研究,作为spotlight论文发表在CVPR 2018上。
通过本系列博文的前16篇文章,您已了解通过插件开发一个完整的运动、健身、学生体测、云上运动会等小程序的完整流程了,但是系列之前的文章都是基于相机实时取像的,有的开发者就会问,既然可以实现基于摄像头实时识别,那么能否实现用户上传视频识别呢?今天我们就来看看如何实现基于用户上传视频的运动、动作、姿态检测识别。
小伙伴们可能好奇,为什么AI猜拳能够做到如此神奇?不仅出拳速度快,还能够每次都赢?
姿态估计和行为识别作为计算机视觉的两个领域,对于新人来说,较为容易弄混姿态估计和行为识别两个概念。
Facebook的智能摄像头团队一直致力于研究各种计算机视觉技术,并进行工具开发以便人们加以应用。比如,应用实时“风格迁移”技术,可以将你的照片或视频渲染成梵高风格。或者应用实时面部捕捉技术,对你的照片进行美颜,甚至直接用化身(比如卡通形象)替换你的头像。更进一步,如果能用化身(Avatar)对你整个身体进行替代会怎样呢?
入侵探测在安防场景中应用较久,指的是外界物体(人、车或其他物体)不经允许擅自进入规定区域时,通过某种途径或方式进行阻止或提醒监管人员注意。目前较为常见的人员入侵检测有电子围栏入侵探测、红外对射探测、震动电缆入侵探测等等。随着人工智能计算机视觉技术的快速发展,基于AI深度学习算法的入侵检测也越来越普及。
领取专属 10元无门槛券
手把手带您无忧上云