本文为原创作品,我是本文和动词算子式代码生成器的原作者,其它网站的相关原创信息也是我发布的。
最近,英伟达发布了实时绘画工具GauGAN的第二代,主要特性是支持输入文本来生成图像。
机器之心报道 机器之心编辑部 电影《超人总动员》中的巴小飞和《飞屋环游记》中的小罗都是大家熟悉且喜欢的角色。但你有没有想过,这些动漫角色的「真人」版会是什么样子……这项研究将告诉你答案。 将人脸卡通化的应用我们已经见过一些了,比如此前介绍过的 Toonify Yourself !,那么能不能反过来,将卡通形象变成「真人版」呢? 最近 GS&P 广告公司技术总监 Nathan Shipley 利用AI创建了皮克斯角色的「真人」版,看起来效果还不错。(PS:他曾经制作了「复活」艺术家达利的deepfake实例
不得了,以生成逼真假照片出名、被称作“史上最佳GAN”的BigGAN,被“本家”踢馆了。
英伟达提出的风格迁移模型 StyleGAN 系列,一直是人们用来进行各类脑洞画图实验的流行工具。从生成二次元「老婆」,照片修图,到人物的卡通化,最近几年基于这种技术的应用不一而足。
机器之心报道 机器之心编辑部 来自以色列特拉维夫大学的研究者在生成图像方面又有了新的升级,所用方法在保留源图像身份的同时,在细节编辑上实现了更精细的效果。 英伟达提出的风格迁移模型 StyleGAN 系列,一直是人们用来进行各类脑洞画图实验的流行工具。从生成二次元「老婆」,照片修图,到人物的卡通化,最近几年基于这种技术的应用不一而足。 然而 StyleGAN 也一直有着自己的不足,近年来的各种改进也未能让其在反向生成、细节编辑上实现精细的效果。什么时候我们才能让 AI 随心所欲地修改真人照片呢? 今年 6
生成的讲话动画不但口型和音频能够无缝对齐,面部表情和头部姿势都非常自然而且有表现力。
当然,如果你有喜欢的二次元老婆,想看她穿越到现实会是什么样子,也没有问题。只要输入一张她的头像:
今天我们向你介绍另一部分,我们将深入了解CVPR 2018(计算机视觉和模式识别)会议的一些论文的细节。 我们已经有四个:关于计算机视觉的GAN,关于人类的姿势估计和跟踪,关于合成数据,以及最后关于域适应。 特别在第四部分中,我们提出了三篇关于同一主题的论文,这些论文实际具有数字可比性。
新智元报道 来源:TechCrunch,arXiv 编辑:文强,克雷格 【新智元导读】如何将照片中闭着的眼睛“打开”,一直是计算机视觉和图形学中的难题。Facebook提出了一种Exemplar
本文总结了来自三星莫斯科AI中心和Skolkovo科学技术研究所的研究人员提出的“Few-Shot Adversarial Learning of Realistic Neural Talking Head Models”,该模型的训练基于少量图像(few-shot),可以生成人物头像开口说话的动图。
还记得那个「会说话」的蒙娜丽莎吗?机器之心前不久报道了一项来自三星莫斯科 AI 中心和 Skolkovo 科学技术研究所的研究。在那项研究中,研究人员利用一张图像就合成了人物头像的动图,而且头像中的人物可以「说话」(只动嘴不发声)。蒙娜丽莎、梦露等名人画像、照片都可以用来作为「原料」。
生成式对抗网络(Generative Adversarial Networks, GAN)诞生于2014年,它的作者Ian Goodfellow 因它而声名大噪,被誉为“GAN 之父”。
条件生成对抗网络(cGANs)为许多计算机视觉和图形应用提供了可控的图像合成。然而,最近的cGANs比现代识别CNNs的计算强度高1-2个数量级。例如,GauGAN每个映像消耗281G MACs,而MobileNet-v3只消耗0.44G MACs,这使得交互式部署非常困难。
1 (2018-07-24) Unpaired Photo-to-Caricature Translation on Faces in the Wild
GAN诞生在2014年,Ian Goodfellow和他的同事发表了名为生成性对抗网络Generative Adversarial Nets的论文。
样式映射器将预设样式应用于它接收到的照片。在最近的一项研究中,来自伊利诺伊大学厄巴纳-香槟分校的研究人员将JoJoGAN介绍为一种从单个样式样本中学习样式映射器的简单方法。例如,该技术允许没有经验的用户提供样式样本,然后将该样式应用于他们选择的图像。该团队在人脸照片的背景下讨论了它的方法,因为风格化的人脸对没有经验的用户非常有吸引力;然而,这个概念可以应用于任何图像。
【导读】图像到图像的转换技术一般需要大量的成对数据,然而要收集这些数据异常耗时耗力。因此本文主要介绍了无需成对示例便能实现图像转换的 CycleGAN 图像转换技术。文章分为五部分,分别概述了:图像转换的问题;CycleGAN 的非成对图像转换原理;CycleGAN 的架构模型;CycleGAN 的应用以及注意事项。
欢迎与我分享你的看法。 转载请注明出处:http://taowusheng.cn/
该论文是出自于CVPR2022关于GAN的最新文章。要知道虽然目前GAN可以在某些领域的理想条件下能够生成逼真的图像,但由于发型、服装和姿势的多样性,生成全身人体图像仍然很困难,之前的方法一般是用单个GAN对这个复杂域进行建模。
2019年,据美联社报道,一名间谍利用AI生成的个人资料和图片,在全球知名的职场社交平台LinkedIn上欺骗联系人,包括政治专家和政府内部人员[1][2]。 这位30多岁的女性名叫凯蒂•琼斯,拥有一份顶级智库的工作,虽然她的关系网规模不大,只有52个联系人,但却都有着举足轻重的影响力,比如:一位副助理国务卿、一位参议员的高级助理、以及正在考虑谋求美联储一席之地的经济学家保罗•温弗里。 然而,经过许多相关人员和专家的调查采访,美联社证实了凯蒂•琼斯其实并不存在,她的人脸照片似乎是由一种典型的GAN技
中山大学、联想的研究团队推出了ConsistentID,可在细粒度多模态面部提示下,仅利用单张参考图像生成多样的肖像,且保持五官的一致性。
这组效果惊艳到可怕的成果,出自英伟达的研究人员最近提出的一种新的生成器架构,基于风格迁移,将面部细节分离出来,由模型进行单独调整,从而大幅度超越传统GAN等模型,生成的面部图像结果简直逼真到可怕,可以说是GAN 2.0。
寿命年龄转换合成(Lifespan Age Transformation Synthesis)是一个以 GAN 为基础的新方法,旨在从一个单一的输入图像模拟连续老化的过程。
我们在《一文看懂深度学习(概念+优缺点+典型算法)》中讲过,深度学习最特别最厉害的地方就是能够自己学习特征提取。
提供在线玩法的网站(链接见文末),就是那个著名的抱抱脸 (Hugging Face)。
基于生成对抗网络(GAN)的动漫人物生成近年来兴起的动漫产业新技术。传统的GAN模型利用反向传播算法,通过生成器和判别器动态对抗,得到一个目标生成模型。由于训练过程不稳定,网络难以收敛,导致生成的图像缺乏多样性和准确性,甚至会产生模式崩溃。本文基于深度学习,参考相关实战项目pytorch-book,学习网络的训练方法,采用经过标准化处理和分类的动漫人物面部图像知乎用户何之源分享的素材,训练DCGAN,实现动漫人物图像自动生成。在训练过程中,控制实验参数,进行定量分析和优化,得到可自动生成动漫人物图像的生成器模型。主要工作如下:
随着人工智能的火速发展,如今人们在图像问题上面有了十足的成果了。给大家看几张图,大家可以猜一猜这些图片中哪些是真实的照片,哪些是程序生成的图片?
人类可以在图像中构建知识。每次我们看到一个想法或经验时,大脑都会立即对其进行视觉表示。同样,我们的大脑也在不断地在声音或纹理等感官信号与其视觉表现之间切换上下文。我们在视觉表示中思考的能力还没有完全扩展到人工智能 (AI) 算法。大多数 AI 模型都高度专业化于一种数据表示形式,例如图像、文本或声音。而我们研究的最终目的是将开始看到可以在不同数据格式之间有效转换以优化知识创造的人工智能形式。最近来自微软的 AI 研究人员发表了一篇论文,提出了一种基于短文本生成图像的方法。
在Facebook的F8大会上,国外技术小哥Jason Antic展示了一种叫DeOldify的AI模型,这种技术为老电影上色效果堪称惊艳。
CVPR2018即将开始,陆陆续续很多优秀的作品被大家知晓。今天我们来说说又去的科研成果,也希望阅读您对此感兴趣~
场景描述:将「马赛克」像素级别的大头照转换成高清照片,是一种怎样的体验?杜克大学提出的 AI 算法,不仅可以「去掉马赛克」,还能精细到每一道皱纹、每一根头发。你要试试吗?
作者 | 神经星星 出品 | HyperAI超神经 By 超神经 内容一览:最强二次元风格迁移模型 AnimeGAN 更新啦,现在可以在线上轻松运行模型,还可以调整风格参数,输出你想要的照片效果。 关键词:风格迁移 机器视觉 二次元 AnimeGANv2 最近发布了一项更新,由社区贡献者开发,通过 Gradio 实现了一个可以在线运行的 Demo,发布在 huggingface 上。 访问 https://huggingface.co/spaces/akhaliq/AnimeGANv2 即可在线上轻松实
人脸超分通常依赖人脸先验信息进行细节复原并保持身份信息。受益于GAN先验信息辅助,近来人脸超分取得了长足发展:或者采用复杂的模块对GAN先验进行调制,或者采用复杂训练策略对生成器进行微调。
英伟达近日提出的新一代 StyleGAN,通过对 StyleGAN 的生成效果分析,他们对不完美的工作设计了改进和优化方法,使得生成图片的质量和效果更上一层楼。
今天我们来聊一聊一个比较有趣的话题,那就是近年来在人工智能深度学习领域的热点--生成式对抗网络(GAN)。
肖像画是一种独特的艺术形式,通常使用一组稀疏的连续图形元素如线条来捕捉一个人的外表特征。
肖像画作为人物画的一种,其简约的风格以及以形写神、迁想妙得的创作方法获得了大家的喜爱。
AI 科技评论按:该项工作被CVPR 2019录取为oral paper。CVPR是计算机视觉和人工智能领域内的国际顶级会议,2019共收到投稿5160篇,录取1300篇,其中oral paper288篇,仅占全部投稿的5.6%。
该项工作被CVPR 2019录取为oral paper。CVPR是计算机视觉和人工智能领域内的国际顶级会议,2019共收到投稿5160篇,录取1300篇,其中oral paper288篇,仅占全部投稿的5.6%。
肖像画是一种独特的艺术形式,通常使用一组稀疏的连续图形元素,如线条来捕捉一个人的外表特征。肖像画通常是在人物面前或基于人物照片进行创作的,其创作依赖于细致的观察、分析和丰富的经验。一幅好的肖像画能很好地捕捉到人的个性和情感。然而,即使是受过专业训练的艺术家,完成一幅精致的肖像画也需要很长时间。
机器之心报道 作者:张倩、魔王 get 了这个网站,今年万圣节 C 位就是你的! AI 是一个盛产阴间产品的领域,这一点似乎已经毋庸置疑。前不久,有人做了个用来生成「大眼萌」漫画形象的网站「Toonify」,但很快就有人走向了另一个极端:用类似技术做一个丧尸生成器! 利用 Toonify 生成的威尔 · 史密斯漫画形象。 利用「丧尸生成器」生成的威尔 · 斯密斯丧尸形象。 被玩坏的两位美国总统候选人。 这种搞笑又惊悚的风格似乎和即将到来的万圣节很般配。 为了让大家都用上这个效果,作者还专门做了一个名
论文链接:http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Deep_Photo_Enhancer_CVPR_2018_paper.pdf 实验demo: http://www.cmlab.csie.ntu.edu.tw/project/Deep-Photo-Enhancer/
作者 | 张俊林 责编 | 何永灿 人工智能最近三年发展如火如荼,学术界、工业界、投资界各方一起发力,硬件、算法与数据共同发展,不仅仅是大型互联网公司,包括大量创业公司以及传统行业的公司都开始涉足人工智能。 2017年人工智能行业延续了2016年蓬勃发展的势头,那么在过去的一年里AI行业从技术发展角度有哪些重要进展?未来又有哪些发展趋势?本文从大家比较关注的若干领域作为代表,来归纳AI领域一些方向的重要技术进展。 从AlphaGo Zero到Alpha Zero:迈向通用人工智能的关键一步 DeepMind
图 1:OTAvatar 动画结果。OTAvatar 以单张肖像为参考对 HDTF 数据集中的源主体进行动画化。我们使用 3DMM 姿态和表情系数来表示运动并驱动化身。此处的主体均不包括于 OTAvatar 的训练数据中。
每当用户将照片或视频上传到社交媒体平台时,这些平台的面部识别系统都会对用户有一定的了解。这些算法会提取包括用户的身份、所在地以及认识的人在内的数据,而且还在不断提升。
领取专属 10元无门槛券
手把手带您无忧上云