首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

由浅入深CNN中卷积层与转置卷积层的关系

,通过与权重矩阵相乘层层传递,而卷积层则认为上一层的有些节点下一层其实是不需要的,所以提出了卷积核矩阵的概念,如果卷积核的大小是n*m,那么意味着该卷积核认为上一层节点每次映射到下一层节点都只有n*m个节点是有意义的...,具体的映射方式下一节会讲到。...,学习了图片的局部特征,可以说是带有目的性的学习,例如3*3的卷积核学习的就是相互距离为2的节点之间的关系。...给出的动图,会发现右边和下边的填充区域我们并没有进行卷积运算,因为向下取整而忽略了,所以我们在转置卷积时需要将这部分加回来,因此,在PyTorch中convTranspose函数还有一个参数output_padding...参考文档 知乎上对CNN的直观解释,平移不变性笔者是从这里了解到的 《A guide to convolution arithmetic for deep learning》的github,本文的动图都来自于此

4K111

pytorch中的卷积操作详解

首先说下pytorch中的Tensor通道排列顺序是:[batch, channel, height, width] 我们常用的卷积(Conv2d)在pytorch中对应的函数是: torch.nn.Conv2d...N为非整数的情况(例如在alexnet,googlenet网络的第一层输出),再例如输入的矩阵 H=W=5,卷积核的F=2,S=2,Padding=1。...经计算我们得到的N =(5 – 2 + 2*1)/ 2 +1 = 3.5 此时在Pytorch中是如何处理呢,先直接告诉你结论:在卷积过程中会直接将最后一行以及最后一列给忽略掉,以保证N为整数,此时N...,就能得到我们的输出矩阵,需要注意的是pytorch中的卷积默认是带有bias的,所以计算卷积后需要加上bias偏量。...,在pytorch的卷积过程中,当通过N = (W − F + 2P ) / S + 1计算式得到的输出尺寸非整数时,会通过删除多余的行和列来保证卷积的输出尺寸为整数。

60340
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PyTorch中Linear层的原理 | PyTorch系列(十六)

    Linear 层如何使用矩阵乘法将它们的输入特征转换为输出特征。...当输入特征被一个Linear 层接收时,它们以一个 展平成一维张量的形式接收,然后乘以权重矩阵。这个矩阵乘法产生输出特征。 让我们看看代码中的一个例子。...这也是Linear 层的工作原理。它们使用权重矩阵将一个in_feature空间映射到一个out_feature空间。...我们已经定义了一个线性层,它接受4个输入特征并把它们转换成3个输出特征,所以我们从4维空间转换到3维空间。我们知道需要一个权重矩阵被用执行这个操作,但是在这个例子中权重矩阵在哪里呢?...这意味着这两个例子中的线性函数是不同的,所以我们使用不同的函数来产生这些输出。 ? 记住权矩阵中的值定义了线性函数。这演示了在训练过程中,随着权重的更新,网络的映射是如何变化的。

    10.2K81

    使用Pytorch和Matplotlib可视化卷积神经网络的特征

    在处理深度卷积网络时,过滤器和特征映射很重要。滤镜是使特征被复制的东西,也是模型看到的东西。 什么是CNN的滤镜和特性映射? 过滤器是使用反向传播算法学习的一组权值。...通过叠加越来越多的CNN层,我们可以从一个CNN中得到更加抽象和深入的信息。 ? 特性映射是我们通过图像的像素值进行滤波后得到的结果。这就是模型在图像中看到的这个过程叫做卷积运算。...但是在本篇文章中您将了解如何访问复杂体系结构的内部卷积层后,您将更加适应使用类似的或更复杂的体系结构。 我使用的图片来自pexels。这是我为了训练我的人脸识别分类器而收集的一幅图像。 ?...从第6行开始,我们将遍历ResNet-50模型的所有层。 具体来说,我们在三层嵌套中检查卷积层 第7行,检查模型的直接子层中是否有卷积层。...我们将最后一层的输出作为下一个卷积层的输入(featuremaps[-1])。 另外,我们将每个层的输出附加到featuremaps列表中。 特征的可视化 这是最后一步。

    2.9K20

    Pytorch-卷积神经网络的运算流程(中)

    而kernel中的3代表对input的x上的三个通道上均进行卷积运算。而multi-kernels中的16泛指包括了blur、edge等16个功能、3代表对每一个通道上的逐渐进行卷积运算。...这里要求可以从结果逆推出bias和kernel的参数值。 那么这种持续的叠加会输出什么结果呢,如下所示 ? 最初的小汽车经过多个卷积层后依次输出的结果如上,神经网络会从这上面提取到不同的特征结构。...这里一般认为第一层的feature map上得到的是一些低维的特征(整体模型、颜色、角度等),第二层的feature map上得到的是一些高维的特征(如棱形结构等),更高层的feature map上会得到一些更高维的特征...总而言之,通过不断地卷积,可以持续提取到不同的特征。 那么在pytorch中,是如何实现这种代码的编写?...# 这种神经网络结构的编写要用到nn.Conv2d # 该API意为进行2D的函数卷积层计算 import torch import torch.nn as nn layer = nn.Conv2d

    80310

    【Pytorch 】笔记五:nn 模块中的网络层介绍

    通过上面,我们会发现不同权重的卷积核代表不同的模式,会关注不同的特征,这样我们只要设置多个卷积核同时对图片的特征进行提取,就可以提取不同的特征。...下面我们看看 nn 中其他常用的层。 3.池化层 池化运算:对信号进行“「收集」”并“「总结」”, 类似水池收集水资源, 因而美其名曰池化层。...4.线性层 线性层又称为全连接层,其每个神经元与上一层所有神经元相连实现对前一层的「线性组合,线性变换」 线性层的具体计算过程在这里不再赘述,直接学习 Pytorch 的线性模块。...从比较重要的卷积层开始,学习了1d 2d 3d 卷积到底在干什么事情,采用了动图的方式进行演示,卷积运算其实就是通过不同的卷积核去提取不同的特征。...第二块是池化运算和池化层的学习,关于池化,一般和卷积一块使用,目的是收集和合并卷积提取的特征,去除一些冗余,分为最大池化和平均池化。

    2K51

    【综述】神经网络中不同种类的卷积层

    Convolution 下图是一个单通道卷积操作的示意图: ? 在深度学习中,卷积的目的是从输入中提取有用的特征。...在图像处理中,卷积滤波器的选择范围非常广,每种类型的滤波器(比如Sobel算子、Canny算子等)都有助于从输入图像中提取不同的方面或者特征,比如水平、垂直、边缘或对角线等特征。...而在CNN中,不同的特征是通过卷积在训练过程中自动学习得到的filter的权重得到的。卷积具有权重共享和平移不变性的优点。 下图是一个单filter的卷积的示意图: ?...在了解了空间可分离卷积以后,再来看Flattened Convolutions就比较简单了,Flattened Convolution将标准的卷积核拆分成3个1D卷积核(空间可分离卷积只拆分HxW维度)...深度学习中的学习型滤波器具有分布特征值,直接将分离应用在滤波器中会导致严重的信息损失,过多使用的话会对模型准确率产生一定影响。 7.

    1.2K10

    卷积神经网络中PETCT图像的纹理特征提取

    简介 在使用传统分类器的时候,和深度学习不一样,我们需要人为地定义图像特征,其实CNN的卷积过程就是一个个的滤波器的作用,目的也是为了提取特征,而这种特征可视化之后往往就是纹理、边缘特征了。...因此,在人为定义特征的时候,我们也会去定义一些纹理特征。...在这次实验中,我们用数学的方法定义图像的纹理特征,分别计算出来后就可以放入四个经典的传统分类器(随机森林,支持向量机,AdaBoost,BP-人工神经网络)中分类啦。...,num_img_values表示像素值划分了几等分,相当于上面的栗子中的20. 2、灰度共生矩阵-GLCM/GTSDM 了解了直方图,我们接下来看看灰度共生矩阵Grey-level co-occurrence...如此这般,得到的GLCM矩阵描述的就是一组像素对儿在原始CT图像中,在固定偏移(del_x,del_y)中的共现概率分布。

    1.7K30

    CNN中张量的输入形状和特征图 | Pytorch系列(三)

    如果我们了解这些特征中的每一个以及它们在张量中的轴位置,那么我们就可以对张量数据结构有一个很好的总体理解。 为了分解这个,我们将从后往前推敲,考虑从右到左的轴。...给定一个代表一批图片的张量(类似于上面),我们能使用四个索引定位到一批图片中特定图片的特定通道的特定像素值。 输出通道和特征图 让我们看一下在通过卷积层转换后,张量颜色通道轴是如何变化的解释。...发生这种情况时,卷积操作将改变张量的形状和基础数据。 卷积操作会改变高度和宽度尺寸以及通道数。输出通道的数量是根据卷积层中使用的滤波器的数量而变化。 ?...假设我们有三个卷积滤波器,让我们看看通道轴发生了什么。 由于我们有三个卷积滤波器,因此我们将从卷积层获得三个通道输出。这些通道是卷积层的输出,因此命名为输出通道而不是颜色通道。...之所以使用“特征”这个词,是因为输出代表了图片的特定特征,比如边缘,这些映射是在网络在训练过程中学习的过程中出现的,并且随着我们深入网络而变得更加复杂。

    3.8K30

    Github项目推荐 | Keract - Keras中的激活映射(层输出)和渐变

    pip install keract 这是获取Keras模型(LSTM,转换网......)中每一层的激活(输出)和渐变的一个简单方法。...输出以字典形式呈现,包含输入x的每个model层的激活: { 'conv2d_1/Relu:0': np.array(...), 'conv2d_2/Relu:0': np.array(...),...键是层的名称,值是给定输入x对应的层的输出。 获得权重梯度 model是一个keras.models.Model对象。 x输入数据(numpy数组)。 Keras约定。...keract import get_gradients_of_activationsget_gradients_of_activations(model, x, y) 输出以字典形式呈现,将每个可训练权重映射到其梯度值...以下是使用VGG16的另一个例子: cd examplespython vgg16.py ? 一只猫 ? VGG16的第一个卷积层的输出。

    2.1K20

    基于PyTorch的卷积神经网络经典BackBone(骨干网络)复现

    本次博客基于代码实战复现经典的Backbone结构,并基于PyTorch分享一些网络搭建技巧。 1.VGG 网络架构: VGG16网络由13层卷积层+3层全连接层构成。...更深的网络结构,相比于AlexNet只有5层卷积层,VGG系列加深了网络的深度,更深的结构有助于网络提取图像中更复杂的语义信息。...上图这个结构有一个弊端,即模块中一个分支的输入通道数就是前一个模块所有分支输出通道数之和(通道合并),在多个模块堆叠后计算的参数量将会变得十分巨大,为了解决这个问题,作者在每一个分支的卷积层之前单独加了一个...而对于残差映射,模块中通过引入一个shortcut分支(恒等映射),将网络需要拟合的映射变为残差F(x):F(x) = H(x) - x....基于此,FPN网络在特征提取的过程中融合了不同卷积层的特征,较好的改善了多尺度检测问题。

    1.4K40

    卷积神经网络学习路线(四)| 如何减少卷积层计算量,使用宽卷积的好处及转置卷积中的棋盘效应?

    前言 这是卷积神经网络的学习路线的第四篇文章,这篇文章主要为大家介绍一下如何减少卷积层的计算量,使用宽卷积的好处以及转置卷积中的棋盘效应。 如何减少卷积层计算量?...从本系列的前面几篇文章看,减少卷积层的计算量主要有以下几种方法: 使用池化操作。在卷积层前使用池化操作降低特征图分辨率。 使用堆叠的小卷积核代替大卷积核。VGG16中使用个卷积代替一个卷积。...same方式的填充通常使用0填充的方式对卷积核不满足整除条件的输入特征图进行补全,使得卷积层的输出维度和输入维度一致。...valid方式的填充就是不进行任何填充,在输入特征边缘位置若不足以进行卷积操作,则对边缘信息进行舍弃,因此在步长为1的情况下该填充方式的卷积层输出特征维度可能会略小于输入特征的维度。...附录 转置卷积中的棋盘效应参考文章:https://distill.pub/2016/deconv-checkerboard/ 总结 今天为大家介绍了减少卷积层计算量的方法,使用宽卷积的优点,以及反卷积中的棋盘效应

    1.4K20

    带你了解sklearn中特征工程的几个使用方法

    根据特征选择的形式又可以将特征选择方法分为3种: 用sklearn中的feature_selection库来进行特征选择 Filter: 过滤法:按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的...Embedded: 嵌入法:先使用某些机器学习的算法和模型进行训练,得到各个特征的权值 系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优 劣。...scipy.stats import pearsonr import numpy as np #选择K个最好的特征,返回选择特征后的数据 #第一个参数为计算评估特征是否好的函数,该函数输入特征矩阵和目标向量...相关系数,卡方检验,互信息法选择 特征的原理是相似的,但相关系数通常只适合于连续特征的选择。...width ,petal length 基于树模型的特征选择法 树模型中GBDT也可用来作为基模型进行特征选择,使用feature_selection库的SelectFromModel类 结合GBDT

    1.4K20

    卷积神经网络是什么?CNN结构、训练与优化一文全解

    全连接层: 在处理空间特征后,全连接层用于进行分类或回归。 卷积神经网络的这些组件协同工作,使得CNN能够从原始像素中自动学习有意义的特征层次结构。...卷积核与特征映射 卷积核是一个小型的矩阵,通过在输入上滑动来生成特征映射。每个卷积核都能捕获不同的特征,例如边缘、角点等。 卷积核大小 卷积核的大小影响了它能捕获的特征的尺度。...2.3 池化层 池化层(Pooling Layer)在卷积神经网络中扮演了重要角色,通常用于降低特征映射的维度,从而减少计算需求,并增加特征检测器的感受野。...全局平均池化(Global Average Pooling) 全局平均池化是一种更复杂的池化策略,它计算整个特征映射的平均值。这常用于网络的最后一层,直接用于分类。...Spatial Dropout:在卷积层中随机丢弃整个特征图。 Batch Normalization 通过标准化层输入,加速训练并减轻初始化的敏感性。

    4.1K20

    PyTorch中的傅立叶卷积:通过FFT有效计算大核卷积的数学原理和代码实现

    在数学上,卷积表示为: 尽管离散卷积在计算应用程序中更为常见,但由于本文使用连续变量证明卷积定理(如下所述)要容易得多,因此在本文的大部分内容中,我将使用连续形式。...之后,我们将返回离散情况,并使用傅立叶变换在PyTorch中实现它。离散卷积可以看作是连续卷积的近似值,其中连续函数在规则网格上离散化。因此,我们不会为离散情况重新证明卷积定理。...因为快速傅立叶变换的算法复杂度比卷积低。直接卷积的复杂度为O(n²),因为我们将g中的每个元素传递给f中的每个元素。快速傅立叶变换可以在O(n log n)的时间内计算出来。...在机器学习应用程序中,使用较小的内核大小更为常见,因此PyTorch和Tensorflow之类的深度学习库仅提供直接卷积的实现。但是,在现实世界中,有很多使用大内核的用例,其中傅立叶卷积更为有效。...PyTorch实现 现在,我将演示如何在PyTorch中实现傅立叶卷积函数。它应该模仿torch.nn.functional.convNd的功能,并在实现中利用FFT,而无需用户做任何额外的工作。

    3.2K10

    《深度解析:全连接层—卷积神经网络中的关键纽带》

    在卷积神经网络(CNN)的架构中,全连接层扮演着不可或缺的角色。它如同连接各个组件的桥梁,将卷积层和池化层提取的特征进行整合与转化,最终实现对数据的分类或回归任务。...二、全连接层在卷积神经网络中的作用- 特征整合与提炼:卷积层和池化层负责提取输入数据的各种局部特征,但这些特征较为分散。...例如在图像识别任务中,卷积层和池化层可能提取到了图像中物体的边缘、纹理等局部特征,全连接层则将这些局部特征综合起来,形成对整个物体的完整认知。...例如,在一个图像分类任务中,经过前面的卷积层和池化层处理后,全连接层根据提取到的特征计算出图像属于猫、狗、人等不同类别的概率,最终选择概率最高的类别作为分类结果。...全连接层是卷积神经网络中的关键组件,它将前面层级提取的特征进行整合、分类和非线性建模,实现了从输入到输出的端到端学习。

    21010

    卷积神经网络学习路线(一)| 卷积神经网络的组件以及卷积层是如何在图像中起作用的?

    卷积层 卷积层(Convolution Layer)是卷积神经网络的核心组件,它的作用通常是对输入数据进行特征提取,通过卷积核矩阵对原始数据中隐含关联性进行抽象。原始的二维卷积算子的公式如下: ?...对于卷积层来讲,如果卷积核大小为那么每个神经元只需要和原始图像中的一个的局部区域连接,所以一共只有个连接。可以看到通过局部连接,卷积层的参数量减少了很多。 权值共享:在上面的局部连接中,一个有个参数。...激活层 激活层(Activation Layer)负责对卷积层抽取的特诊进行激活,由于卷积操作是把输入图像和卷积核进行相应的线性变换,需要引入激活层(非线性函数)对其进行非线性映射。...全连接层 全连接层(Full Connected Layer)就是一个线性特征映射的过程,将多维的特征输入映射为二维的特征输出,高维表示样本批次(),低位常常对应任务目标(例如分类就对应每一个类别的概率...想了解每个卷积层学到了什么,一个常见的想法就是把特征图可视化出来。那么怎么可视化呢?介绍一下论文的方法。

    1.8K20

    一文带你了解卷积网络中的几何学

    这里,风代表输入特征。假设我们想要找龙卷风方向作为输出。我们可以对“small patch”执行卷积以从风向提取这些输出特征。...从中心开始,我们向切线空间允许的每个方向迈出一步,并将这一点包含在我们的卷积中。 我们现在需要的是一些与卷积相关的函数。...因此,我们定义了一个内核,为每个指针分配一个矩阵......等待,不,我们用指数映射的切线空间的每个方向。这有点奇怪,但是当你看到经典的2-D卷积时,它实际上也是如此。...注意,每个节点,即每个交叉点,是具有输入特征向量的歧管上的点(在上图中不可见)。每个小三角形都有3个角,每个角都是这些节点之一。他们是我们感兴趣的。 那么,让我们做卷积!...最后,我提到我们的地图是重叠的。因此,如果我们想要在具有重叠的区域上移动卷积滤波器,我们基本上使用来自不同映射的值。我们如何处理这些值?在我们使用它们之前,我们会测量它们到正确的帧。

    93710
    领券