首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

安卓软件开发:如何实现机器学习部署到安卓端

TensorFlow Lite 提供了量化技术,模型的权重和激活函数从浮点数表示转换为整数,从而减少模型大小加快推理速度。...六、学习技术笔记 6.1 简化模型部署的体验 TensorFlow Lite 很好地简化了模型的部署过程,让开发者无需过多关注底层优化细节,就能在移动端上部署机器学习模型。...6.2 模型量化带来的性能提升 在使用量化技术时,我感受到模型的大小大幅减少,同时推理速度也有了明显提升。...在原始模型大小过大的情况下,通过量化能将模型大小减少近 75%,对于移动设备来说,这种优化是非常实用的。 6.2 如何通过量化技术优化模型 模型权重和激活函数的浮点数表示形式转换为整数表示的过程。...6.3 跨平台兼容性和挑战 ONNX 格式为模型的跨平台迁移提供了强有力的支持。

74794

Tensorflow Lite人体姿势跟踪功能上线:基于PosNet的实时人体姿态估计

怀着激动的心情,我们发布了一个「TensorFlow Lite」示例应用程序(https://www.tensorflow.org/lite),通过它在安卓设备上通过使用「PoseNet」模型来实现人体姿势估计...此功能由「estimateSinglePose()」实现,此方法会在处理过的 RGB 位图上运行 TensorFlow Lite 解释器,返回一个 Person 对象。...该应用程序对每张传入的摄像头图像执行以下操作: 从摄像头预览中获取图像数据并将它从「YUV_420_888」转换成「ARGB_888」格式。 创建一个位图对象来保存来自 RGB 格式帧数据的像素。...将位图缩放回屏幕大小,在「Canvas」对象上绘制新的位图。 使用从「Person」对象中获取的关键点位置在画布上绘制骨架。显示置信度超过特定阈值(默认值为 0.2)的关键点。...quantization)量化模型来减少延迟 更多的模型选项,如 ResNet PoseNet 模型 很开心能在这个夏天开发 PoseNet 示例应用程序!

2.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何将自己开发的模型转换为TensorFlow Lite可用模型

    继Apple发布CoreML之后,Google发布了TensorFlow Lite的开发者预览版,这是TensorFlow Mobile的后续发展版本。...通过在支持它的设备上利用硬件加速,TensorFlow Lite可以提供更好的性能。它也具有较少的依赖,从而比其前身有更小的尺寸。...尽管目前还处于早期阶段,但显然谷歌将加速发展TF Lite,持续增加支持并逐渐将注意力从TFMobile转移。考虑到这一点,我们直接选择TFLite, 尝试创建一个简单的应用程序,做一个技术介绍。...在这篇文章中,我们将学习一些通用的技巧,一步一步为移动设备准备一个TFLite模型。...不要让TensorFlow为您做。由于我们在训练脚本中做了一些小改动,我们可以轻松填写每个转换工具中的不同选项。

    3.1K41

    用 TensorFlow Lite 在安卓系统上实现即时人体姿态跟踪

    在谷歌I/O ‘ 19上,TensorFlow Lite展示了一款名为Dance Like的应用程序,它可以帮助用户学习如何使用PoseNet模型跳舞。...此功能由estimateSinglePose()提供,该方法在已处理的RGB位图上运行TensorFlow Lite解释器并返回Person对象。本页面解释如何解释PoseNet的输入和输出。...应用程序对每个传入的相机图像执行以下步骤: 1、从相机预览中捕获图像数据,并将其从YUV_420_888转换为ARGB_888格式。 2、创建一个位图对象来保存RGB格式帧数据中的像素。...在画布对象上绘制新的位图。 5、使用从Person对象获取的关键点的位置在画布上绘制骨架。显示置信度得分高于某个阈值的关键点,默认值为0.2。...在未来,我们希望为这个示例应用探索更多的功能,包括: 1、Multi-pose估计 2、GPU加速与GPU委托 3、使用NNAPI委托加速NNAPI 4、训练后的量化模型,以减少延迟 5、附加的模型选项

    3.8K30

    Android上的TensorFlow Lite,了解一下?

    TensorFlow Lite包含一个运行时,在上面可以运行预先训练好的模型,还包含一套工具,您可以使用这些工具准备用于移动设备和嵌入式设备上的模型。...TensorFlow Lite目前处于开发人员预览版,因此它可能不支持TensorFlow模型中的所有操作。...TensorFlow Lite中使用MobileNet 例如,在这幅图像中,我将相机指向了我最喜爱的咖啡杯,可以看到它主要被分类为“杯子”。考虑到其形状,很容易理解!...import org.tensorflow.lite.Interpreter; 要使用它,您需要创建一个解释器的实例,然后用一个MappedByteBuffer来加载它。...请注意,该应用程序可支持初始(Inception)和量化(Quantized )的MobileNet。默认使用后者,所以您需要确保模型存在,否则应用程序将失败!

    1.8K40

    使用TensorFlow Lite在Android手机上实现图像分类

    这在本章中我们将介绍谷歌的TensorFlow Lite。...的版本为:Tensorflow 1.14.0 转换模型 手机上执行预测,首先需要一个训练好的模型,这个模型不能是TensorFlow原来格式的模型,TensorFlow Lite使用的模型格式是另一种格式的模型...1、最方便的就是在训练的时候保存tflite格式的模型,主要是使用到tf.contrib.lite.toco_convert()接口,下面就是一个简单的例子: import tensorflow as...开发Android项目 有了上面的模型之后,我们就使用Android Studio创建一个Android项目,一路默认就可以了,并不需要C++的支持,因为我们使用到的TensorFlow Lite是Java...tensorflow-lite:0.0.0-nightly' 然后在android下加上以下代码,这个主要是限制不要对tensorflow lite的模型进行压缩,压缩之后就无法加载模型了: /

    3.8K41

    使用 TFLite 在移动设备上优化与部署风格转化模型

    我们希望您可在您的应用中使用我们的预训练风格转化模型,或受此启发,创建更加有趣的应用。 背景 ?...量化 敲定模型架构后,我们使用 TensorFlow 模型优化工具包,通过量化来进一步缩小移动模型。...量化是适用于大多数 TensorFlow 模型移动部署的一项重要技术,在本例中,它可将模型大小缩小为原来的 1/4,在大幅加速模型推理的同时,对质量的影响很小。...训练后整型量化 https://tensorflow.google.cn/lite/performance/post_training_integer_quant 与初始模型相比,量化后,我们的模型大小不止缩小了一个量级...我们通过以下资源来创建模型,也许也适用于您的设备端机器学习用例: Magenta 模型库 (https://magenta.tensorflow.google.cn/) Magenta 是一个由 TensorFlow

    1.7K20

    TensorFlow Lite for Android 初探(附demo)

    TensorFlow Lite 是用于移动设备和嵌入式设备的轻量级解决方案。TensorFlow Lite 支持 Android、iOS 甚至树莓派等多种平台。...对于离线的场合,云端的 AI 就无法使用了,而此时可以在移动设备中使用 TensorFlow Lite。...常用的 Java API TensorFlow Lite 提供了 C ++ 和 Java 两种类型的 API。无论哪种 API 都需要加载模型和运行模型。...而 TensorFlow Lite 的 Java API 使用了 Interpreter 类(解释器)来完成加载模型和运行模型的任务。后面的例子会看到如何使用 Interpreter。 四....每张图片有28x28个像素点构成,每个像素点用一个灰度值表示,这里是将28x28的像素展开为一个一维的行向量(每行784个值)。

    1.1K00

    TensorFlow Lite for Android 初探(附demo)一. TensorFlow Lite二. tflite 格式三. 常用的 Java API四. TensorFlow Lite

    TensorFlow Lite使用.jpeg TensorFlow Lite 是用于移动设备和嵌入式设备的轻量级解决方案。...对于离线的场合,云端的 AI 就无法使用了,而此时可以在移动设备中使用 TensorFlow Lite。...常用的 Java API TensorFlow Lite 提供了 C ++ 和 Java 两种类型的 API。无论哪种 API 都需要加载模型和运行模型。...而 TensorFlow Lite 的 Java API 使用了 Interpreter 类(解释器)来完成加载模型和运行模型的任务。后面的例子会看到如何使用 Interpreter。 四....每张图片有28x28个像素点构成,每个像素点用一个灰度值表示,这里是将28x28的像素展开为一个一维的行向量(每行784个值)。

    3.1K53

    Android TensorFlow Lite 深度学习识别手写数字mnist demo

    TensorFlow Lite ​ TensorFlow Lite特性.jpeg ​ TensorFlow Lite 是用于移动设备和嵌入式设备的轻量级解决方案。...对于离线的场合,云端的 AI 就无法使用了,而此时可以在移动设备中使用 TensorFlow Lite。...常用的 Java API TensorFlow Lite 提供了 C ++ 和 Java 两种类型的 API。无论哪种 API 都需要加载模型和运行模型。...而 TensorFlow Lite 的 Java API 使用了 Interpreter 类(解释器)来完成加载模型和运行模型的任务。后面的例子会看到如何使用 Interpreter。 四....每张图片有28x28个像素点构成,每个像素点用一个灰度值表示,这里是将28x28的像素展开为一个一维的行向量(每行784个值)。

    1.3K00

    手把手教程:如何从零开始训练 TF 模型并在安卓系统上运行

    file tflite_model_name = "mymodel.tflite" open(tflite_model_name, "wb").write(tflite_model) 你可以将转换器的训练后量化设置为...创建一个新的 Android 项目并遵循以下步骤 将 mnist.tflite 模型放在 assets 文件夹下 更新 build.gradle 以包含 tflite 依赖项 为用户创建自定义视图...创建一个进行数字分类的分类器 从自定义视图输入图像 图像预处理 用模型对图像进行分类 后处理 在用户界面中显示结果 Classifier 类是大多数 ML 魔术发生的地方。...将位图转换为 bytebuffer 并将像素转换为灰度,因为 MNIST 数据集是灰度的。 使用由内存映射到 assets 文件夹下的模型文件创建的解释器运行推断。...过程中的挑战 以下是你可能遇到的挑战: 在 tflite 转换期间,如果出现「tflite 不支持某个操作」的错误,则应请求 tensorflow 团队添加该操作或自己创建自定义运算符。

    2.2K20

    TensorFlow 模型优化工具包:模型大小减半,精度几乎不变!

    近日,TensorFlow 强势推出能将模型规模压缩却几乎不影响精度的半精度浮点量化(float16 quantization)工具。小体积、高精度,还能够有效的改善 CPU 和硬件加速器延迟。...图 1 IEEE 754 标准下 binary16 的格式 训练后的 float16 quantization 减少了 TensorFlow Lite 模型的大小(高达 50%),同时以少量的精度损失为代价...训练后的 float16 quantization 是量化 TensorFlow Lite 模型很好的方法,因为它对精度的影响极小并且能够使得模型大小显著减小。...在这里可以通过查看该文档(包括一个新的浮动图表,https://www.tensorflow.org/lite/performance/post_training_quantization),以帮助你了解不同的量化选项和场景...,即使用经过训练的 float32 模型,将优化设置为 DEFAULT,然后再将目标规范支持的类型设置为 float16 常量。

    1.7K30

    【技术创作101训练营】TensorFlow Lite的 GPU 委托(Delegate)加速模型推理

    中间的结点被代理处理,就成为黑盒。这个过程也可以理解成是 TFLite 对模型做了“翻译”,将其”翻译”为将执行后端的黑盒子图。...TFLite的文档有说明(下面内容复制,粘贴一下原文档并做适当调整): 定义一个用于负责评估代理子图的核心节点; 创建一个用于负责注册该核心节点以及说明代理可用节点的实例 TensorFlow Lite...添加其他所需的方法 }; // 为核心节点创建一个替代主 TfLite Graph 中的子图的 TfLiteRegistration。...TensorFlow LIte 的 GPU 代理 [图3 TensorFlow Lite的Demo展示安卓 GPU 推理] 图 TensorFlow Lite的Demo展示安卓 GPU 推理 没说安卓的其他设备...计算Kernel的性能非常好; gpu_experimental_enable_quant: bool (default=true) GPU代理要运行的是否是一个量化的模型,目前该选项只针对Android

    5.4K220191

    EfficientNet-lite详解:当前最强移动端轻量神经网络

    但量化使用了定点数,表示范围相对于浮点数小很多,必然存在精度的损失。借助 TensorFlow Lite 中提供的训练后量化流程来对模型进行量化处理,尽可能地降低了对准确率的影响。...通过量化,模型大小减少为1/4,推理速度提升近2倍。 EfficientNet-lite0 浮点模型float32与int8量化版本在模型尺寸、精度及时延的对比: ? 结构和算子优化。...使用 对于用户个性化的数据集,建议使用 TensorFlow Lite Model Maker,在已有 TensorFlow 模型上使用迁移学习。...TensorFlow Lite Model Maker 支持很多模型结构,包括 MobileNetV2 和所有5个版本的 EfficientNet-Lite。...模型建立好以后,可以将其构建为移动端 app,把自己个性化的模型存放在 asset 文件夹。

    4.4K30

    精度、延迟两不误,移动端性能新SOTA,谷歌TF开源轻量级EfficientNet

    幸运的是,借助 TensorFlow Lite 中提供的训练后量化流程来对模型进行量化处理,能够在最大程度上降低对其准确率的影响。 其次是异构计算设备带来的问题。...激活函数,这一操作极大地提升了训练后量化的质量 放缩模型尺寸时固定住其 stem 与 head 模块以减少放缩后模型的尺寸与计算量 利用 TensorFlow 模型优化工具包进行训练后量化 得益于 TF...官方博客建议使用 TensorFlow Lite Model Maker,这是一个可以在已有 TensorFlow 模型上应用迁移学习的工具。...其中,用户可以使用自己的输入数据,并以 TensorFlow Lite 的形式输出模型。...模型建立好以后,可以将其构建为移动端 app。App 会自动下载在 ImageNet 数据集上预训练过的 EfficientNet-Lite,并存放在 asset 文件件。

    55310

    TensorFlow 模型优化工具包  —  训练后整型量化

    自推出该工具包以来,  我们一直努力降低机器学习模型量化的复杂性 (https://www.tensorflow.org/lite/performance/post_training_quantization...如何启用训练后整型量化 我们的整型量化工具需要使用一个小型代表性数据校正集。只需为转换器提供 representative_dataset 生成器,优化参数便会对输入模型执行整型量化。...这样可使转换过程顺利进行,并会生成始终在常规移动 CPU 上执行的模型,鉴于 TensorFlow Lite 将在只使用整型的加速器中执行整型运算,并在执行浮点运算时回退到 CPU。  ...] 当使用此标记且运算没有可量化的整型对应项时,TensorFlow Lite 转换器将报错。...整型模型的工作原理 记录动态范围 以上新工具的工作原理是:记录动态范围,在浮点 TensorFlow Lite 模型上运行多个推理,并将用户提供的代表性数据集用作输入。

    1.6K50

    智简模型,边缘智能:AI 轻量化与边缘计算的最佳实践

    轻量化图像分类实战以下是一个基于 Python 和 TensorFlow 的案例,通过量化和知识蒸馏,部署轻量化模型到边缘设备。...模型量化代码片段:converter = tf.lite.TFLiteConverter.from_keras_model(model)converter.optimizations = [tf.lite.Optimize.DEFAULT...学生模型的创建与训练代码片段:student_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(16, (3, 3), activation...训练方式: 在编译阶段,定义的损失函数为自定义的蒸馏损失函数,结合硬损失和软损失,确保学生模型既学习了真实标签信息,也学习了教师模型的知识。输出层: 使用 softmax 激活函数,预测类别概率。...总结通过模型量化、剪枝和知识蒸馏等技术,可以在性能和效率之间找到平衡,使得 AI 模型能够运行在边缘设备上,为更多场景带来智能化支持。

    28611

    tf.lite

    一、概述1、模块constants 模块experimental 模块2、类class Interpreter: TensorFlow Lite模型的解释器接口。...1、__init____init__(input_gen)创建一个代表性数据集。参数:input_gen:一个输入生成器,可用于为模型生成输入样本。...(默认错误)change_concat_input_ranges:布尔值,用于更改用于量化模型的concat操作符的输入和输出的最小/最大范围的行为。当为真时,更改concat操作符重叠的范围。...如果为真,则为任何未知的op创建自定义操作。开发人员将需要使用自定义解析器向TensorFlow Lite运行时提供这些。...布尔值,指示是否对转换后的浮点模型的权重进行量化。模型大小将会减小,并且会有延迟改进(以精度为代价)。

    5.3K60

    为你的机器学习模型创建API服务

    创建一个简单模型 以一个kaggle经典的比赛项目:泰坦尼克号生还者预测为例,训练一个简单的模型。 以下是整个机器学习模型的API代码目录树: ? 首先,我们需要导入训练集并选择特征。...基于Flask框架创建API服务 使用Flask部署模型服务,需要写一个函数predict(),并完成以下两件事: 当应用程序启动时,将已持久化的模型加载到内存中; 创建一个API站点,该站点接受输入变量的请求后...API已经创建完毕,flask_api.py的代码部分也已构造完毕。...API的有效性测试 首先运行我们的模型API服务,我们通过Pycharm来启动上一小节编写完成的flask_api.py: ? 可以看到,在启动API服务后,模型以及列名被顺利的加载到了内存中。...此外,除了可以对模型预测部分构建API以外,也可以对训练过程构建一个API,包括通过发送超参数、发送模型类型等让客户来构建属于自己的机器学习模型。当然,这也将是我下一步要做的事情。

    2.5K20
    领券