损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...='sgd') 你可以传递一个现有的损失函数名,或者一个TensorFlow/Theano符号函数。...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...,你的目标值应该是分类格式 (即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。...为了将 整数目标值 转换为 分类目标值,你可以使用Keras实用函数to_categorical: from keras.utils.np_utils import to_categorical categorical_labels
Karim MANJRA 发布在 Unsplash 上的照片 keras 中常用的损失函数 ---- 如上所述,我们可以创建一个我们自己的自定义损失函数;但是在这之前,讨论现有的 Keras 损失函数是很好的...什么是自定义损失函数? ---- 对于不同的损失函数,计算损失的公式有不同的定义。在某些情况下,我们可能需要使用 Keras 没有提供的损失计算公式。...实现自定义损失函数 ---- 现在让我们为我们的 Keras 模型实现一个自定义的损失函数。首先,我们需要定义我们的 Keras 模型。...定义 keras 的自定义损失函数 要进一步使用自定义损失函数,我们需要定义优化器。我们将在这里使用 RMSProp 优化器。RMSprop 代表均方根传播。...RMSprop 优化器类似于具有动量的梯度下降。常用的优化器被命名为 rmsprop、Adam 和 sgd。 我们需要将自定义的损失函数和优化器传递给在模型实例上调用的 compile 方法。
1.自定义层 对于简单、无状态的自定义操作,你也许可以通过 layers.core.Lambda 层来实现。但是对于那些包含了可训练权重的自定义层,你应该自己实现这种层。...2.自定义评价函数 自定义评价函数应该在编译的时候(compile)传递进去。该函数需要以 (y_true, y_pred) 作为输入参数,并返回一个张量作为输出结果。...rmsprop', loss='binary_crossentropy', metrics=['accuracy', mean_pred]) 3.自定义损失函数...自定义损失函数也应该在编译的时候(compile)传递进去。...(或其他自定义对象) 如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将它们传递给加载机制: from keras.models import load_model
尤其是AlphaGo战胜了李世石之后,引来了外界大量的关注,从而得到了迅猛的发展。 既然神经网络也是机器学习的一个部分,那么神经网络模型同样需要损失函数。...损失函数的作用是量化模型当前的性能,由于是程序执行,我们需要有一个明确的指标告诉我们模型的能力究竟如何。另外模型训练也需要一个学习的目标,缩小损失函数就是模型学习的目标。...机器学习基础——详解机器学习损失函数之交叉熵 简单来说,交叉熵一般被用作分类问题的评估,对于分类问题,我们一般神经网络面临的是一个one-hot的向量。...导数求出来了,梯度自然也就好求了,梯度本质上的定义其实是函数对于各个变量偏导组成的向量。比如我们的样本是 ,在这一点的梯度就是 。...由于整个函数成一个类似马鞍的形状, 所以这个局部最优点称为鞍点。 比如在下图当中,红色点的部分各个方向的梯度均为0,但是它显然不是函数的最低点。但是通过梯度下降法到达这个点之后就无法再进行更新了。
本小节主要推导逻辑回归损失函数的梯度,通过与线性回归模型的梯度进行比较找出逻辑回归损失函数梯度的向量化表示。...a 推 导 损 失 函 数 的 梯 度 在上一小节中,我们详细推导出了逻辑回归的损失函数,在最后提到了逻辑回归的损失函数并没有数学解析解(不能通过公式代入样本和标签直接求出最终的θ),只能使用诸如梯度下降法这种迭代求解的方式来找到使得损失函数...使用梯度下降法求解损失函数的最优解,需要求出损失函数J(θ)关于θ向量中每个维度的导数。...b 向 量 化 前面求解出了逻辑回归损失函数的梯度,如果还记得线性回归时候求解的损失函数梯度的话,会发现两者有很多相通之处。 ?...▲逻辑回归梯度的向量化表示 有了逻辑回归损失函数的梯度,在梯度下降法的框架下可以非常容易的迭代搜索出使得损失函数J(θ)最小的θ解。
引言 在深度学习的领域,全连接层、损失函数与梯度下降是三块重要的基石。如果你正在踏上深度学习的旅程,理解它们是迈向成功的第一步。...最终,通过激活函数完成非线性变换,使得网络能够处理复杂的任务。 1.2 为什么需要全连接层? 全连接层的主要作用是: 特征融合:将不同的特征组合起来,捕捉全局信息。...深度学习的目标是通过优化算法(如梯度下降),不断调整模型参数,以最小化损失函数的值。 损失函数的两种主要类型: 回归问题:预测连续值,常用的损失函数包括均方误差(MSE)和平均绝对误差(MAE)。...第三部分:梯度下降——优化的利器 3.1 梯度下降的原理 梯度下降是一种迭代优化算法,通过最小化损失函数来寻找最优参数。它的核心思想是:沿着损失函数的负梯度方向调整参数,直到损失值最小。...(\nabla_\theta J(\theta)):损失函数对参数的梯度。 3.2 梯度下降的三种变体 批量梯度下降(Batch Gradient Descent): 对整个数据集计算梯度。
对于训练中的每个批次,Keras会调用函数huber_fn()计算损失,用损失来做梯度下降。另外,Keras会从一开始跟踪总损失,并展示平均损失。 在保存这个模型时,这个自定义损失会发生什么呢?...相反的,指标(比如准确率)是用来评估模型的:指标的解释性一定要好,可以是不可微分的,或者可以在任何地方的梯度都是0。 但是,在多数情况下,定义一个自定义指标函数和定义一个自定义损失函数是完全一样的。...另外,当你写的自定义损失函数、自定义指标、自定义层或任何其它自定义函数,并在Keras模型中使用的,Keras都自动将其转换成了TF函数,不用使用tf.function()。...注意,其它函数不需要用@tf.function装饰。...如果想让一个函数可以转换为TF函数,要遵守设么规则? 什么时候需要创建一个动态Keras模型?怎么做?为什么不让所有模型都是动态的?
损失函数中为什么要用Log Loss 在使用似然函数最大化时,其形式是进行连乘,但是为了便于处理,一般会套上log,这样便可以将连乘转化为求和,求和形式更容易求偏导,应用到梯度下降中求最优解; 由于...为什么对数可以将乘法转化为加法?...在监督学习和非监督学习中,数据是静态的、不需要与环境进行交互,比如猫狗识别,只要给出足够的差异样本,将数据输入神经网络中进行训练即可。...模型训练及评估 我们需要预先设定损失函数Loss计算得到的损失值,这里选择对数损失函数(Log Loss)作为模型评价指标。...对数损失函数(Log Loss)亦被称为逻辑回归损失(Logistic regression loss)或交叉熵损失(Cross-entropy loss),刻画的是两个概率分布之间的距离,是分类问题中使用广泛的一种损失函数
这给我们留下了任何管道中的 2 个重要组件 - 加载数据和训练部分。我们来看看训练部分。这一步最重要的两个组成部分是优化器和损失函数。...损失函数量化了我们现有模型与我们想要达到的目标之间的距离,优化器决定如何更新参数,以便我们可以最大限度地减少损失。 有时,我们需要定义自己的损失函数。...这里有一些事情要知道 自定义损失函数也是使用自定义类定义的。它们像自定义模型一样继承自 torch.nn.Module。 通常,我们需要更改其中一项输入的维度。这可以使用 view() 函数来完成。...如果我们想为张量添加维度,请使用 unsqueeze() 函数。 损失函数最终返回的值必须是标量值。不是矢量/张量。 返回的值必须是一个变量。这样它就可以用于更新参数。...这里我展示了一个名为 Regress_Loss 的自定义损失,它将 2 种输入 x 和 y 作为输入。然后将 x 重塑为与 y 相似,最后通过计算重塑后的 x 和 y 之间的 L2 差来返回损失。
相关 配套代码, 请参考文章 : Python和PyTorch对比实现多标签softmax + cross-entropy交叉熵损失及反向传播 有关 softmax 的详细介绍, 请参考 : softmax...函数详解及反向传播中的梯度求导 有关 cross-entropy 的详细介绍, 请参考 : 通过案例详解cross-entropy交叉熵损失函数 系列文章索引 : https://blog.csdn.net...softmax 和 cross-entropy 的梯度, 已经在上面的两篇文章中分别给出. 1....题目 考虑一个输入向量 x, 经 softmax 函数归一化处理后得到向量 s 作为预测的概率分布, 已知向量 y 为真实的概率分布, 由 cross-entropy 函数计算得出误差值 error (...标量 e ), 求 e 关于 x 的梯度.
逻辑回归反向传播伪代码; 大家可以思考下能不能回答/推导出,但这次讨论的问题是: 为什么逻辑回归损失函数是交叉熵? 初看这个问题感觉很奇怪,但是其中的知识包含了LR的推导与理解。...首先假设两个逻辑回归的两个条件概率: ? 学习时,采用极大似然估计来估计模型的参数,似然函数为: ? 对数似然函数(采用对数似然函数是因为上述公式的连乘操作易造成下溢)为: ?...再将其改为最小化负的对对数似然函数: ? 如此,就得到了Logistic回归的损失函数,即机器学习中的「二元交叉熵」(Binary crossentropy): ?...此时转变为以负对数似然函数为目标函数的最优化问题,采用梯度下降法进行优化。 0x02 KL散度 KL散度这个概念知道的人可能相对极大似然估计更少一点,具体可以看机器学习笔记---信息熵。...因为交叉熵越大,KL散度越大,也可以用交叉熵来衡量两个概率分布之间的距离,所以逻辑回归使用交叉熵作为逻辑回归的损失函数。
模型用的是 mean_square_error 损失函数,用梯度下降算法 LogisticRegression 模型用的是 cross_entropy 损失函数,用梯度下降算法 损失函数和算法都会在...损失函数 在 Keras 里将层连成模型确定网络架构后,你还需要选择以下两个参数,选择损失函数和设定优化器。 在训练过程中需要将最小化损失函数,这它是衡量当前任务是否已成功完成的标准。...,为什么呢?...为什么还有参数不需要训练呢?你想想迁移学习,把借过来的网络锁住开始的 n 层,只训练最后 1- 2 层,那前面 n 层的参数可不就不参与训练吗? ---- 再回顾一下代码。 ?...除了 Keras 自带指标,我们还可以自定指标,下列的 mean_pred 就是自定义指标(该指标计算预测的平均值)。
在过去的几年里,两个主要的深度学习库Keras和Pytorch获得了大量关注,主要是因为它们的使用比较简单。 本文将介绍Keras与Pytorch的4个不同点以及为什么选择其中一个库的原因。...但是在选择Keras和Pytorch时,你应该记住它们的几个方面。 (1)定义模型的类与函数 为了定义深度学习模型,Keras提供了函数式API。...如果你需要实现一些自定义的东西,那么在TF张量和Numpy数组之间来回切换可能会很麻烦,这要求开发人员对TensorFlow会话有一个较好的理解。 Pytorch的互操作实际上要简单得多。...当然,如果你从来不需要实现任何奇特的东西,那么Keras就会做得很好,因为你不会遇到任何TensorFlow的障碍。但是如果你有这个需求,那么Pytorch将会是一个更加好的选择。...Keras绝对是最容易使用、理解和快速上手并运行的框架。你不需要担心GPU设置,处理抽象代码,或者做任何复杂的事情。你甚至可以在不接触TensorFlow的任何一行的情况下实现定制层和损失函数。
学习率过高 过高的学习率会导致梯度爆炸,从而产生NaN值。 损失函数不稳定 损失函数中存在一些操作可能导致数值不稳定,如对数函数的输入为0等。...') 方法三:稳定的损失函数 确保损失函数的数值稳定性。...回答:NaN梯度通常是由于数值不稳定性引起的,可能的原因包括初始化参数不当、学习率过高、损失函数不稳定等。 问题:如何选择合适的初始化方法?...通过合理初始化参数、调整学习率、使用稳定的损失函数以及应用梯度剪裁等方法,可以有效解决NaN梯度问题,从而确保模型的正常训练。...表格总结️ 问题类型 解决方案 初始化参数不当 使用Xavier或He初始化 学习率过高 调整学习率 损失函数不稳定 使用稳定的损失函数 梯度爆炸 应用梯度剪裁 未来展望 随着深度学习技术的发展,处理数值稳定性问题的方法也在不断改进
://blog.csdn.net/oBrightLamp/article/details/84069835 正文 在大多数教程中, softmax 和 cross-entropy 总是一起出现, 求梯度的时候也是一起考虑...softmax 和 cross-entropy 的梯度, 已经在上面的两篇文章中分别给出. 1 题目 考虑一个输入向量 x, 经 softmax 函数归一化处理后得到向量 s 作为预测的概率分布,...已知向量 y 为真实的概率分布, 由 cross-entropy 函数计算得出误差值 error (标量 e ), 求 e 关于 x 的梯度. ?
这个损失函数会忽略一些输出,见图15-5(例如,在序列到矢量的RNN中,除了最后一项,其它的都被忽略了)。损失函数的梯度通过展开的网络反向传播(实线箭头)。...注意,梯度在损失函数所使用的所有输出中反向流动,而不仅仅通过最终输出(例如,在图 15-5 中,损失函数使用网络的最后三个输出 Y(2),Y(3) 和 Y(4),所以梯度流经这三个输出,但不通过 Y(0...这种方法的优势,是损失会包含RNN的每个时间步的输出项,不仅是最后时间步的输出。这意味着模型中会流动着更多的误差梯度,梯度不必只通过时间流动;还可以从输出流动。这样可以稳定和加速训练。...但是非饱和激活函数(如 ReLU)的帮助不大;事实上,它会导致RNN更加不稳定。为什么呢?假设梯度下降更新了权重,可以令第一个时间步的输出提高。...要降低爆炸风险,可以使用更小的学习率,更简单的方法是使用一个饱和激活函数,比如双曲正切函数(这就解释了为什么tanh是默认选项)。同样的道理,梯度本身也可能爆炸。
损失函数NaN的症状与原因 1.1 症状 训练过程中损失函数突然变为NaN 模型权重更新异常 梯度爆炸 1.2 原因 数据异常:输入数据包含NaN或无穷大(Inf)值。 学习率过高:导致梯度爆炸。...2.2 梯度爆炸 梯度爆炸导致权重更新异常,可能引发NaN错误。其根本原因是学习率过高或损失函数不稳定。 3....修改损失函数:使用自定义损失函数,避免NaN值。...check_data(x_train) # 调整学习率 optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) # 自定义损失函数 def...A: 在训练过程中观察损失值,如果突然变为NaN,说明损失函数出现问题。 Q: 什么是梯度爆炸? A: 梯度爆炸是指在反向传播过程中,梯度值变得非常大,导致权重更新异常,可能引发NaN错误。
前言:深度学习的初始化参数指的是在网络训练之前,对各个节点的权重和偏置进行初始化的过程,很多时候我们以为这个初始化是无关紧要的,不需要什么讲究,但是实际上,一个参数的初始化关系到网络能否训练出好的结果或者是以多快的速度收敛...然后在反向传播的过程中,由于是复合函数的求导,根据链式法则,会有两组倒数,一个是损失函数Cost对Z的导数,一个是损失函数对W的导数,(详细过程这里不推到),这里再引入两个概念: (1)损失函数关于状态...(2)损失函数关于参数W的梯度:即 ? 1.2、参数初始化的几个基本条件 什么样的初始化参数才是最好的呢?...以keras为例: keras.initializers.glorot_uniform(seed=None) (3)Glorot初始化器的缺点 因为Xavier的推导过程是基于几个假设的, 其中一个是激活函数是线性的...优点 随着网络层数的增加,分布逐渐发生偏移,之所以收敛慢,是因为整体分布往非线性函数取值区间的上下限靠近。这会导致反向传播时梯度消失。
如何将列转换器用于数据准备 如何为 Sklearn 创建自定义数据转换 机器学习的数据准备(7 天迷你课程) 为什么数据准备在机器学习中如此重要 机器学习的数据准备技术之旅 执行数据准备时如何避免数据泄露...训练深度学习神经网络时如何选择损失函数 如何配置神经网络的层数和节点数 如何使用节点和层控制神经网络模型容量 如何使用批量大小控制神经网络训练的稳定性 如何在 Keras 中创建深度学习模型的装袋集成...训练深度学习神经网络时如何配置学习率 用于训练深度学习神经网络的损失和损失函数 如何在 Keras 开发深度学习模型集成 神经网络诀窍(书评) 在 Keras 中集成神经网络模型权重(Polyak 平均...开发用于图像到图像转换的 CycleGAN 生成对抗性网络损失函数的温和介绍 如何从零开始开发 Wasserstein 生成对抗网络 如何在 Keras 中实现 GAN Hacks 来训练稳定模型 如何编写...GAN 训练算法和损失函数 如何从头开发一个条件 GAN(CGAN) 如何在 Keras 从零开始开发 1D 生成对抗网络 如何开发 GAN 来生成 CIFAR10 小型彩色照片 如何开发 GAN 来生成
tf.keras封装的太好了 。不利于适用于自定义的循环与训练,添加自定义的循环 是一个命令式的编程环境,它使得我们可以立即评估操作产生的结果,而无需构建计算图。...="softmax")) 3)自定义训练 1、自定义训练的时候,我要先定义他的优化函数,在tf2里面,优化函数全部归到了optimizers里面。...optimizer=tf.keras.optimizers.Adam() 2、定义loss的函数,计算损失值,SparseCategoricalCrossentropy()是一个可调用的对象。...————————————————————————————————— 3、定义损失函数 #定义损失函数 def loss(model,x,y): y_=model(x) #y_是预测的label...定义优化器 定义损失函数 定义每一个批次的训练 定义训练函数 开始训练
领取专属 10元无门槛券
手把手带您无忧上云