首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么AlexNet在卷积层使用96、256和384滤波器?

AlexNet在卷积层使用96、256和384滤波器的原因是为了增加网络的深度和宽度,从而提高模型的表达能力和学习能力。

具体来说,AlexNet是一种经典的深度卷积神经网络模型,用于图像分类任务。它的设计目标是在大规模图像数据集上取得较好的性能。在卷积层中使用多个滤波器的主要目的是提取不同尺度和不同特征的信息。

使用96个滤波器的第一层卷积层可以捕捉到低级的图像特征,如边缘、纹理等。这些低级特征对于图像分类任务非常重要。

使用256个滤波器的第三层卷积层可以捕捉到更高级的特征,如形状、部分物体等。这些高级特征对于图像分类任务的准确性和鲁棒性有很大的影响。

使用384个滤波器的第五层卷积层可以进一步提取更加抽象和复杂的特征,如物体的整体形状、组合特征等。这些特征对于图像分类任务的性能提升至关重要。

总的来说,通过在卷积层中使用不同数量的滤波器,AlexNet可以逐层地提取图像的不同级别的特征,从而实现更好的图像分类效果。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云AI计算平台:https://cloud.tencent.com/product/ai
  • 腾讯云图像识别:https://cloud.tencent.com/product/imagerecognition
  • 腾讯云视频智能分析:https://cloud.tencent.com/product/vca
  • 腾讯云云服务器:https://cloud.tencent.com/product/cvm
  • 腾讯云云数据库:https://cloud.tencent.com/product/cdb
  • 腾讯云云存储:https://cloud.tencent.com/product/cos
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 深度学习经典网络解析:2.AlexNet

    在上篇深度学习经典网络解析(一):LeNet-5中我们提到,LeNet-5创造了卷积神经网络,但是LeNet-5并没有把CNN发扬光大,是CNN真正开始走进人们视野的是今天要介绍的——AlexNet网络。AlexNet网络源自于《ImageNet Classification with Deep Convolutional Neural Networks》这篇论文。作者是是Hinton率领的谷歌团队(Alex Krizhevsky,Ilya Sutskever,Geoffrey E. Hinton),Hinton在上一篇博客我们也曾介绍过,他是深度学习之父,在人工智能寒冬时期,Hinton一直就默默地坚持深度网络的方向,终于在2006年的《Science》上提出了DNN,为如今深度学习的繁荣奠定了基础。AlexNet利用了两块GPU进行计算,大大提高了运算效率,并且在ILSVRC-2012竞赛中获得了top-5测试的15.3%error rate, 获得第二名的方法error rate 是 26.2%,可以说差距是非常的大了,足以说明这个网络在当时给学术界和工业界带来的冲击之大。

    03

    VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION(VGG)

    在这项工作中,我们研究了卷积网络深度对其在大规模图像识别设置中的准确性的影响。我们的主要贡献是使用一个非常小的(3×3)卷积滤波器的架构对增加深度的网络进行了全面的评估,这表明通过将深度提升到16-19个权重层,可以显著改善先前的配置。这些发现是我们提交的ImageNet挑战赛的基础,我们的团队在定位和分类方面分别获得了第一名和第二名。我们还表明,我们的表现可以很好地推广到其他数据集,在这些数据集上,他们可以获得最先进的结果。我们已经公开了两个性能最好的ConvNet模型,以便进一步研究如何在计算机视觉中使用深度视觉表示。

    00

    googlenet网络模型简介_网络参考模型

    一、GoogleNet模型简介   GoogleNet和VGG是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper。跟VGG不同的是,GoogleNet做了更大胆的网络上的尝试而不是像VGG继承了Lenet以及AlexNet的一些框架,该模型虽然有22层,但大小却比AlexNet和VGG都小很多,性能优越。 深度学习以及神经网络快速发展,人们容易通过更高性能的硬件,更庞大的带标签数据和更深更宽的网络模型等手段来获得更好的预测识别效果,但是这一策略带来了两个重要的缺陷。   (1)更深更宽的网络模型会产生巨量参数,从而容易出现过拟合现象。   (2)网络规模加大会极大增加计算量,消耗更多的计算资源。   解决这两个缺陷的根本方法就是将全连接甚至一般的卷积都转化为稀疏连接。一方面现实生物神经系统的连接也是稀疏的,另一方面有文献表明:对于大规模稀疏的神经网络,可以通过分析激活值的统计特性和对高度相关的输出进行聚类来逐层构建出一个最优网络。这点表明臃肿的稀疏网络可能被不失性能地简化。 虽然数学证明有着严格的条件限制,但Hebbian定理有力地支持了这一结论。   由于计算机软硬件对非均匀稀疏数据的计算效率很差,所以在AlexNet模型重新启用了全连接层,其目的是为了更好地优化并行运算。所以,现在的问题是否有一种方法,既能保持网络结构的稀疏性,又能利用密集矩阵的高计算性能。事实上可以将稀疏矩阵聚类为较为密集的子矩阵来提高计算性能,具体方法是采用将多个稀疏矩阵合并成相关的稠密子矩阵的方法来提高计算性能,Google团队沿着这个思路提出了名为Inception 结构来实现此目的。

    01
    领券