首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

十大最受欢迎的人工智能模型

最常见的情况是,当我们有一些历史数据X和Y和AI模型部署到可以提供最好的这些值之间的映射。结果不能100%准确,否则,这将是一个简单的数学计算不需要机器学习。...学习矢量量化或LVQ资讯进化模型,神经网络,使用码向量来定义所需的训练数据集和整理结果。因此说,向量是随机的,和学习的过程涉及到调整值最大化的预测精度。 ?...随机决策森林 Random Decision Forests or Bagging 随机决策森林形成决策树,多个样本数据处理通过决策树和结果汇总(喜欢收集许多样品袋)找到更准确的输出值。 ?...找到一个最优的路线,而是多重次优路由定义,从而使总的结果更精确。如果决策树解决问题之后,随机森林是一个调整的方法,提供了一个更好的结果。深度神经网络 Deep Neural Networks ?...考虑以下因素: 1、3 V的大数据需要处理(输入的数量、种类和速度) 2、计算资源的数量在你的处置 3、时间可以花在数据处理 4、数据处理的目的 因此说,如果一些模型提供了94%的预测精度为代价的两次延长处理时间

3.5K30

Python 实现随机森林预测宽带客户离网(附源数据与代码)

能够理解基本原理并将代码用于实际的业务案例是本文的目标,本文将详细介绍如何利用Python实现集成学习中随机森林这个经典的方法来预测宽带客户的流失,主要将分为两个部分: 详细原理介绍 Python代码实战...---- 随机森林 随机森林的实现步骤如下: 有关随机森林算法,本文说明以下几个问题 问:为什么在列上也要随机抽样?...答:随机森林中每棵决策树的权重都是一样的,如果这个袋子中有 10 棵决策树(或者其他模型),那每棵树给出的预测结果的权重便是 1/10,这是随机森林的特性。...装袋法的优势如下: 准确率明显高于组合中任何单个分类器 对于较大的噪音,表现不至于很差,并且具有鲁棒性 不容易过度拟合 随机森林算法的优点: 准确率有时可以和神经网络媳美,比逻辑回归高 对错误和离群点更加鲁棒性...## 根据原理部分,可知随机森林是处理数据不平衡问题的利器 接着拆分测试集与训练集,客户id没有用,故丢弃cust_id, y = df['broadband'] X = df.iloc[:, 1:-

1.5K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    原理+代码|深入浅出Python随机森林预测实战

    能够理解基本原理并将代码用于实际的业务案例是本文的目标,本文将详细介绍如何利用Python实现集成学习中随机森林这个经典的方法来预测宽带客户的流失,主要将分为两个部分: 详细原理介绍 Python代码实战...有关随机森林算法,本文说明以下几个问题 问:为什么在列上也要随机抽样? 答:在引入笔者最最喜欢的一个比喻之前,先来看一个实际的业务场景,来自某城市商业银行。...答:随机森林中每棵决策树的权重都是一样的,如果这个袋子中有 10 棵决策树(或者其他模型),那每棵树给出的预测结果的权重便是 1/10,这是随机森林的特性。...装袋法的优势如下: 准确率明显高于组合中任何单个分类器 对于较大的噪音,表现不至于很差,并且具有鲁棒性 不容易过度拟合 随机森林算法的优点: 准确率有时可以和神经网络媳美,比逻辑回归高 对错误和离群点更加鲁棒性...## 根据原理部分,可知随机森林是处理数据不平衡问题的利器 接着拆分测试集与训练集,客户id没有用,故丢弃cust_id, y = df['broadband'] X = df.iloc[:, 1:-

    1.5K20

    数学建模--随机森林

    随机森林是一种基于决策树的集成学习方法,通过构建多个决策树并汇总其预测结果来完成分类或回归任务。...随机森林模型在处理大规模数据集时的性能表现如何? 随机森林模型在处理大规模数据集时的性能表现总体上是积极的。...随机森林在处理大规模数据集时具有显著的优势,包括并行计算能力、良好的泛化能力和鲁棒性以及对原始数据的低要求。 如何选择随机森林中决策树的最大深度和最优的特征选择策略?...随机森林在处理大数据集、特征重要性检测、抗噪声能力和鲁棒性方面表现出色,但在运行时间、对噪声数据的敏感性、结果不可重复性以及在线性关系建模和小样本处理方面的限制等方面存在劣势。...以下是几种常见的方法: 局部差分隐私(Local Differential Privacy, LDP) : 在医学领域,通过将局部差分隐私应用于多样化和高维的医疗数据,可以在保持模型精度的同时提供隐私保护

    14610

    最受欢迎的十大AI模型

    企业面临的一系列问题是巨大的,用于解决这些问题的ML模型的种类很多,因为有些算法在处理某些类型的问题方面比其他算法更好。...Y = F(X) 最常见的情况是,当我们有一些历史数据X和Y时,可以部署AI模型以提供这些值之间的最佳映射。结果不能100%准确,否则,这将是一个简单的数学计算,无需机器学习。...随机决策森林或Bagging 随机决策森林由决策树组成,其中多个数据样本由决策树处理,并且结果被聚合(如收集袋中的许多样本)以找到更准确的输出值。...如果决策树解决了您所追求的问题,随机森林是一种方法中的调整,可以提供更好的结果。 深度神经网络 DNN是最广泛使用的AI和ML算法之一。...考虑以下因素: 您需要处理的3 V大数据(输入的数量,种类和速度) 您可以使用的计算资源数量 您可以花在数据处理上的时间 数据处理的目标 如上所述,如果某种模型以超过两倍的处理时间为代价提供94%的预测精度

    7.6K40

    决策树与随机森林

    如图一个简单的决策树分类模型: 根节点:最顶层的节点,也是最重要的节点。如图中“是否去健身房” 叶子节点:代表标签类别。如图中“看”和“不看” 中间节点:中间分类条件。...如何构建决策树 根节点以及树节点是从最重要到次重要依次排序的,ID3算法用的是信息增益,C4.5算法用信息增益率;CART算法使用基尼系数。...虽然这个决策树对于训练数据集的拟合概率为100%,但是由于过分考虑所有的数据,将数据切得太碎太碎了,这样就会使得决策树学习到一些噪音点、错误点,出现过拟合的现象。...问题1:为什么要随机抽样训练集? 如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的,这样的话完全没有bagging的必要; 问题2:为什么要有放回地抽样?...案例解析 https://zhuanlan.zhihu.com/p/74345351 6.直观解释为什么随机森林胜过决策树? 两个直观的原因 随机森林由多个单树组成,每个树基于训练数据的随机样本。

    1.3K20

    为什么机器学习应用交易那么难(中)

    1 标签噪音以及我们可以采取的措施 在上一篇文章的基础上,我们想讨论低信噪比的影响及其影响: 标签/错误标签 特征不支持的模式 这是如何体现的,以及我们将采取哪些措施来改善其所带来的问题。...如果我们的标签(在训练中提供的标签)具有较高的误差,则我们已将模型偏向该误差。我们标签中50%的错误率肯定会导致模型像随机模型一样好。具有50%的标签错误率并不是破坏ML模型的必要条件。...9 随机森林的一种解决方案 在应用监督学习时,我们倾向于使用贝叶斯模型和随机森林,因为它们通常比深度学习或替代方法更适合我们的特征集。...在适应非独立性方面,我们修改了scikit-learn的随机森林分类器和随机森林回归器算法来解决此问题。 变化如下:调整了随机森林分类器和回归器,以允许用户定义采样函数。...对于样本内: 以及样本外51%的精确度: 我们在《为什么机器学习应用交易那么难(上)》示例中的特征集和标签并不出色,因此没想到可行的策略。

    1.2K31

    使用随机森林:在121数据集上测试179个分类器

    这是一个巨大的研究。 一些算法在计算最后的得分前被调整,并且使用4则交叉验证来评估算法。 他们发现随机森林(特别是R中的并行随机森林)和高斯支持向量机(特别是来自libSVM)的表现最好。...从论文摘要: 最有可能是最好的分类器是随机森林(RF)版本,其中最好的(在R中实现并通过插入符号访问)在84.3%的数据集中精度超过90%,最大达到了94.1%。...在关于本文的HackerNews的讨论中,Kaggle的Ben Hamner对袋装决策树的深刻表现进行了确凿的评论: 这与我们运行数百个Kaggle比赛的经验是一致的:对于大多数分类问题,合奏决策树(随机森林...(很像20世纪90年代中期的STATLOG项目) 实践中:选择一个中间地带 在开始之前,您无法知道哪个算法(或算法配置)在您的问题上表现良好,甚至是最好。...在这项研究的背景下,点检是介于选择你最喜欢的算法和测试所有知道的算法之间的中间地带。 选择你最喜欢的算法。快速但受限于任何你最喜爱的算法或库恰好是对这个问题合适的。 点检查十几种算法。

    2.1K70

    【深度森林第三弹】周志华等提出梯度提升决策树再胜DNN

    通过构建层次结构或“深层”结构,模型能够在监督或非监督的环境中从原始数据中学习良好的表示,这被认为是成功的关键因素。成功的应用领域包括计算机视觉、语音识别、自然语言处理等等。...例如, 诸如随机森林或梯度提升决策树(GBDT)之类的树集成仍然是在各种领域中对离散或表格数据进行建模的主要方式,因此将在树集成的数据中获得所学习的分层分布式表示。...这就产生了两个基本问题:首先,我们能否构造一个具有不可微组件的多层模型,使中间层中的输出可以被视为分布式表示?第二,如果是这样的,如何在不借助反向传播的情况下共同训练这些模型?...本文的目的就是提供这样的一种尝试。 最近周志华和冯霁提出了“深度森林”框架,这是第一次尝试用树集成来构建多层模型。...最后,作者还列出了他们未来探讨的方面,比如深度森林整合(Deep Forest Integration)以及使用mGBDT的变体和混合DNN。

    81720

    【机器学习】随机森林

    最后介绍了Bagging的代表学习算法随机森林,从方差和偏差的角度分析了Bagging为什么能集成以及随机森林为什么能防止过拟合。...到此,随机森林基本介绍完,但是依然存在问题,随机森林为什么能防止过拟合,随机森林适合什么样的场景?...,随机森林能够提供平衡数据集误差的有效方法,比如对于 10:1 的数据,将多数数据分为 10份,做 10个 1:1 的单模型然后 Bagging 起来即可。...当进行回归时,随机森林不能够做出超越训练集数据范围的预测,这可能导致在某些特定噪声的数据进行建模时出现过度拟合。(PS:随机森林已经被证明在某些噪音较大的分类或者回归问题上会过拟合)。...对于小数据或者低维数据(特征较少的数据),可能不能产生很好的分类。(处理高维数据,处理特征遗失数据,处理不平衡数据是随机森林的长处)。

    99420

    机器学习算法选择

    (就算在训练集上正确率100%,也不能说明它刻画了真实的数据分布,要知道刻画真实的数据分布才是我们的目的,而不是只刻画训练集的有限的数据点)。...,逻辑回归的性能不是很好; 容易欠拟合,一般准确度不太高 不能很好地处理大量多类特征或变量; 只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分; 对于非线性特征,需要进行转换...它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况...它的缺点之一就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF(或提升树boosted tree)之类的集成方法的切入点。...,那么可以将它的结果作为基准来参考; 然后试试决策树(随机森林)是否可以大幅度提升模型性能。

    61130

    《python数据分析与数据化运营》笔记2021.9.16

    1、如何选择聚类算法? P165, 100万条内选K聚类数据量大时间久,数据高维选择降维、子空间聚类(谱聚类),Mini Batch KMeans,分类准确选谱聚类。 2、聚类和分类的区别?...3、如何选择分类算法? 防止决策树过拟合,SVM的L2正则最小,随机森林、adaboost等 准确性高-向量机、随机森林、神经网络 可解释性-决策树 4、如何选择回归?...P174 多重共线性-岭回归 噪音多-主成分回归 高维度-正则化回归(逻辑回归) 交叉验证 解释性-线性、指数、对数、二项式、多项式比向量回归好 组合,加权、均值 5、什么情况下不能用回归分析?...是否有了新因变量,自变量在范围内 6、回归分析的判断指标? 回归系数X,判定系数R2(因果关系),相关性系数R 7、为什么要用时间序列? 时间中的隐形规律 8、什么情况下不适用时间序列预测?...不适合商业环境复杂的企业,数据的平稳性、白噪声检验 9、数据分析的流程是什么? 大流程、小流程、循环流程、迭代流程 10、如何处理异常值、重复值、空值?

    49130

    独家 | 一文读懂随机森林的解释和实现(附python代码)

    理解决策树 决策树是随机森林的基本构成要素,而且是一种直观的模型。我们可以将决策树视为一系列关于数据的是/否问题,从而最终得出一个预测类别(或回归情况下的连续值)。...过拟合:为什么森林比一棵树更好 你可能会想问为什么不能只用一个决策树呢?它似乎很完美,因为它没有犯任何错误!但别忘了这个关键点,即这棵树是在训练数据上没有犯错。...如果你能理解一棵单独的决策树,bagging的理念,以及随机的特征子集,那么你对随机森林的工作方式也就有了很好的理解: 随机森林将成百上千棵决策树组合在一起,在略微不同的观察集上训练每个决策树,在每棵树中仅考虑有限数量的特征来拆分节点...随机森林的最终预测是通过平均每棵树的预测来得到的。 想理解为什么随机森林优于单一的决策树,请想象以下场景:你要判断特斯拉的股票是否上涨,现在你身边有十几位对该公司都没有先验知识的分析师。...我们可以在随机森林中优化的东西包括决策树的数量,每个决策树的最大深度,拆分每个节点的最大特征数量,以及叶子节点中所能包含的最大数据点数。

    6.3K31

    【干货】随机森林的Python实现

    本文介绍了随机森林的原理、用途,以及用 Python 实现随机森林的方法。 什么是随机森林? 随机森林几乎是任何预测类问题(甚至非线性问题)的首选。...然后这些预测结果被组合成一个预测,这个预测的准确率应当等于或大于任一分类器做出的预测。 随机森林是集成学习中非常有效的一种,因为它依赖于许多决策树的集合。...正如它的名字所示,随机森林是分类(或回归)决策树的聚合。决策树由一系列能够用于对一个数据集的观察进行分类的决策组成(参考:决策树的可视化演示)。...少数好的决策树做出了准确度高的预测,它们处于“噪声”的顶端,使得随机森林最终能产生较好的预测结果。 为什么使用随机森林? 因为它简单。 随机森林就像学习方法中的瑞士军刀,任何东西它都可以给你修好。...回归 我发现随机森林——不像其他算法——在学习分类变量或分类变量和真实变量的结合时真的很有效。高基数的分类变量处理起来很棘手,因此随机森林会大有帮助。

    1.9K50

    快速入门Python机器学习(19)

    get_n_leaves() 返回决策树的叶数。 get_params([deep]) 获取此估计器的参数。 predict(X[, check_input]) 预测X的类或回归值。...= util() X,y = make_regression(n_samples=100,n_features=1,n_informative=2,noise=50,random_state...9.5 决策树剪枝处理 不管是决策树分类还是决策树回归,过拟合现象是决策树算法的最大问题,但是从“9.4.2分析有噪音make_regression数据”可以看到,决策树还是一种非常有效的方法,解决过拟合现象有以下两种方法...: 剪枝处理 随机森林 随机森林的属于集成学习的一类,我们将在下一章进行介绍。...())) 输出 不剪枝,训练数据集上的精度: 100.00% 不剪枝,训练数据集上的精度: 93.71% 不剪枝,树的深度:7 剪枝,训练数据集上的精度: 98.83% 剪枝,训练数据集上的精度: 95.10%

    29810

    随机森林

    定义 随机森林算法的思想就是通过集成学习和随机的方式将多棵树集成的一种算法,通过多棵树对数据集进行学习训练最后投票选举出最佳的一个最终的输出。这里每一棵树是一颗决策树,也叫作一个分类器。...特点: 准确率极高 不用对决策树剪枝 能够很好的处理高维度的数据,不需要降维 能很好的处理大数据及 在有缺省值的时候也能得到很好的结果 相关概念 信息,熵,信息增益: 其实这几个概念是在决策树中出现的,...决策树通过计算每一次分裂的最佳学习增益来决定如何选择下一步将要分裂的属性,也就是特征选取的顺序。...通过多N个样本构建的决策树就可以得到N个预测,然后再测试样本的时候,使用这N个决策树预测得到的结果使用投票机制就可已得到最终的分类结果。 一些疑问? 为什么要随机选择训练集?...优缺点: 优点: 它能够处理很高维度(feature很多)的数据,并且不用做特征选择; 由于随机选择样本导致的每次学习决策树使用不同训练集,所以可以一定程度上避免过拟合; 缺点: 随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合

    88270

    机器学习算法比较

    ,逻辑回归的性能不是很好; 容易欠拟合,一般准确度不太高 不能很好地处理大量多类特征或变量; 只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分; 对于非线性特征,需要进行转换...它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况...它的缺点之一就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF(或提升树boosted tree)之类的集成方法的切入点。...关于随机森林和GBDT等组合算法,参考这篇文章:机器学习-组合算法总结 缺点:对outlier比较敏感 6SVM支持向量机 高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分...; 2、然后试试决策树(随机森林)看看是否可以大幅度提升你的模型性能。

    59630

    随机森林(原理样例实现参数调优)

    随机森林大致过程如下: 1)从样本集中有放回随机采样选出n个样本; 2)从所有特征中随机选择k个特征,对选出的样本利用这些特征建立决策树(一般是CART,也可是别的或混合); 3)重复以上两步...2.随机森林特点: 随机森林有很多优点: 1) 每棵树都选择部分样本及部分特征,一定程度避免过拟合; 2) 每棵树随机选择样本并随机选择特征,使得具有很好的抗噪能力,性能稳定; 3) 能处理很高维度的数据...3.使用: 随机森林算法在大部分数据处理软件中都有实现,使用时可以直接调用,只需指定所需参数。...随机森林模型训练前要设置的参数较多,按PAI平台的实现有如下几个: o 算法类型:(可选)可供选择的算法类型有id3算法、cart算法、c4.5算法以及默认情况下的将上述三种算法均分的混合算法...0.2:此选项允许每个随机森林的子树可以利用变量(特征)数的20%。如果想考察的特征x%的作用, 我们可以使用“0.X”的格式。 max_features如何影响性能和速度?

    1K10

    机器学习算法比较

    (就算在训练集上正确率100%,也不能说明它刻画了真实的数据分布,要知道刻画真实的数据分布才是我们的目的,而不是只刻画训练集的有限的数据点)。...,逻辑回归的性能不是很好; 容易欠拟合,一般准确度不太高 不能很好地处理大量多类特征或变量; 只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分; 对于非线性特征,需要进行转换...它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况...它的缺点之一就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF(或提升树boosted tree)之类的集成方法的切入点。...然后试试决策树(随机森林)看看是否可以大幅度提升你的模型性能。

    56890

    常用的机器学习算法比较

    (就算在训练集上正确率100%,也不能说明它刻画了真实的数据分布,要知道刻画真实的数据分布才是我们的目的,而不是只刻画训练集的有限的数据点)。...; 缺点: 当特征空间很大时,逻辑回归的性能不是很好; 容易欠拟合,一般准确度不太高 不能很好地处理大量多类特征或变量; 只能处理两分类问题(在此基础上衍生出来的softmax...它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况...它的缺点之一就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF(或提升树boosted tree)之类的集成方法的切入点。...; 然后试试决策树(随机森林)看看是否可以大幅度提升你的模型性能。

    36720
    领券