首页
学习
活动
专区
圈层
工具
发布

matlab中绘制三维柱状图bar3函数的使用方法

bar3 - 绘制三维条形图 此 MATLAB 函数 绘制三维条形图,Z 中的每个元素对应一个条形图。如果 Z 是向量,y 轴的刻 度范围是从 1 至 length(Z)。...详细解释 bar3 绘制三维条形图。 bar3(Z) 绘制三维条形图,Z 中的每个元素对应一个条形图。如果 Z 是向量,y 轴的刻度范围是从 1 至 length(Z)。...如果 Z 是矩阵,则 y 轴的刻度范围是从 1 到 Z 的行数。 bar3(Y,Z) 在 Y 指定的位置绘制 Z 中各元素的条形图,其中 Y 是为垂直条形定义 y 值的向量。...显示的默认模式为 'detached'。 'detached' 在 x 方向上将 Z 中的每一行的元素显示为一个接一个的单独的块。...如果 Z 是矩阵,则 bar3 将为 Z 中的每一列创建一个 Surface 对象。 案例 创建三维条形图 加载数据集 count.dat,它会返回一个三列矩阵 count。

1.6K10

数据可视化的秘密

然而,将大量数据在同一个图表中画出来并不容易。早期的测绘、天气数据都需要长时间的手工绘制。随着计算机绘图功能的开发,手工绘画已经完全被自动绘图程序取代。...可见,刻度的范围会影响人们对数据的认知。小的刻度范围会让人觉得数据变化较大(即使数据本身还是一样的数据)。 因此,一个图表是由数据和绘制方法两方面构成的。...在Hans Rosling的绘图中,六个坐标分别是:水平x轴,竖直y轴,圆圈颜色,圆圈大小,动画帧所对应的时间,以及文字标明的国家名。这六个维度之间相互独立,所以可以互不干扰的反映各个维度上的取值。...再比如下面的条形图和饼图。它们都是在反映二维信息。条形图采取了x-y的坐标。饼图采取了文字-圆心角的坐标。 ? ? 每一个坐标都需要有刻度。读者需要根据刻度获知数据的准确取值。...刻度可以是均匀线性增长的,也可以是不均匀增长(比如对数刻度)。刻度的选择要根据数据的特征。如果不同数据样本在某个维度上取值差异较大,就适用于对数取值。

1.3K70
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【学习】数据可视化的秘密和数据绘图的要素

    然而,将大量数据在同一个图表中画出来并不容易。早期的测绘、天气数据都需要长时间的手工绘制。随着计算机绘图功能的开发,手工绘画已经完全被自动绘图程序取代。...可见,刻度的范围会影响人们对数据的认知。小的刻度范围会让人觉得数据变化较大(即使数据本身还是一样的数据)。 因此,一个图表是由数据和绘制方法两方面构成的。...在Hans Rosling的绘图中,六个坐标分别是:水平x轴,竖直y轴,圆圈颜色,圆圈大小,动画帧所对应的时间,以及文字标明的国家名。这六个维度之间相互独立,所以可以互不干扰的反映各个维度上的取值。...再比如下面的条形图和饼图。它们都是在反映二维信息。条形图采取了x-y的坐标。饼图采取了文字-圆心角的坐标。 ? ? 每一个坐标都需要有刻度。读者需要根据刻度获知数据的准确取值。...刻度可以是均匀线性增长的,也可以是不均匀增长(比如对数刻度)。刻度的选择要根据数据的特征。如果不同数据样本在某个维度上取值差异较大,就适用于对数取值。

    1K70

    数据可视化的秘密

    然而,将大量数据在同一个图表中画出来并不容易。早期的测绘、天气数据都需要长时间的手工绘制。随着计算机绘图功能的开发,手工绘画已经完全被自动绘图程序取代。...可见,刻度的范围会影响人们对数据的认知。小的刻度范围会让人觉得数据变化较大(即使数据本身还是一样的数据)。 因此,一个图表是由数据和绘制方法两方面构成的。...2) 数据的信息呈现方式多种多样 我们需要先确定想要绘制的信息维度。比如上面的视频中,六个信息维度得到呈现。而在S&P 500的绘图中,我们只呈现了两个维度的信息,时间和指数。...这六个维度之间相互独立,所以可以互不干扰的反映各个维度上的取值。再比如下面的条形图和饼图。它们都是在反映二维信息。条形图采取了x-y的坐标。饼图采取了文字-圆心角的坐标。 ? ?...每一个坐标都需要有刻度。读者需要根据刻度获知数据的准确取值。刻度可以是均匀线性增长的,也可以是不均匀增长(比如对数刻度)。刻度的选择要根据数据的特征。

    1.4K70

    让你彻底弄懂用Python绘制条形图(柱状图)

    从以上结果可以发现,由于数据较多,条形图密密麻麻,看不出具体趋势。故在绘图之前,最好先进行统计汇总。...四、并列条形图 有时在绘制条形图时需对比显示某些信息,比如想同时观察股票最高价和最低价的变化趋势,可采用并列条形图,具体语句如下: result = date.groupby(date.index.year...五、叠加条形图 有时一个变量的数值恒小于另一个变量,这时可以把两个条形图绘制到一个条形图中,用不同的颜色显示这两个条形图即可。...比如股票价格的最小值恒小于最大值,可以把这两个数组绘制在同一个条形图中,具体语句如下: result = date.groupby(date.index.year).agg(high=('最高价','mean...至此,在Python中绘制条形图已全部讲解完毕,感兴趣的同学可以自己实现一遍

    13.5K40

    R语言十八讲(七)

    R的画图功能是非常强大的,这非常有利于数据可视化,对于R画图,我们一 般使用三个画图系统,分别是R自带的画图系统,另外还有两个包,他们的画图功能也很强大,即lattice包和GGplot包,一般我们从自带的系统画图功能开始学起...R中的画图函数有高级画图函数和低级画图函数,所谓高级画图函数就是,它占用一个画板上,在此画板上绘制图像,而低级绘图函数,则不占用画板,它在高级绘图函数的基础上,进行绘制图像,也就是说,低级绘图函数只是在高级绘图函数绘制的图形基础上修改...高级绘图函数有如下: dev.new()新建画板 plot()绘制点线图,条形图,散点图. barplot( ) 绘制条形图 dotchart( ) 绘制点图 pie( )绘制饼图. pair( )绘制散点图阵...有的不能,我们也不需要加以背诵,使用多了,自然就记住了,那在我们还没有熟悉之前,我们如果不知道可以使用哪些参数,有一个很简单的办法,就是打开绘图函数的帮助文档,就可以看到可以添加的绘图参数,那么这里,我们只需了解参数的含义以及其使用方法就可以啦...,如需要更加高级,更加多的绘图知识,可以去阅读相关书籍,另外,在接下来的连载中,我们也会涉及许多其他的绘图函数,和绘图方式.欢迎你继续阅读.

    1.3K60

    Matplotlib玩转动态可视化

    在我们的效果展示中,可以看到 类型是条形图,数值高低排序,每个条形图颜色不一样,我们来一步一步看看如何做出最终效果~ 4.1.朴实无华的条形图 barh是条形图,就是横着的柱状图,以下我们先取2019年的年度数据展示前...我们看到上面这张图平平无奇,朴实无华的配色,没有多一分的元素(标题、数据标签等等),接下来我们先把条形图美化一下 4.2.有点还行的条形图 通过自定义条形图配色,再附上一些text说明。...4.3.会动的条形图 既然动图是一张张图刷新而来,那我们把每年的数据都做一张图再定时刷新替换不就好了,这样当然是可以的。...,这是因为我们是按照每一年的数据绘制一次导致的,那么如何让效果更加顺滑呢?...(一般来说,可以把每年的数据分为多份,比如我们认为每两年之间存在N组值,那么就是有N-2个缺失值,通过pandas的缺失值插值处理可以补充一些值作为绘图的辅助值,从而让效果更加顺滑,那么如何进行插值呢?

    2.6K20

    【MATLAB】进阶绘图 ( MATLAB 颜色值 | 条形图示例 | 查找对象属性方法 | 修改条形图属性 )

    文章目录 一、MATLAB 颜色值 二、条形图示例 三、查找条形图相关属性 四、设置条形图颜色代码示例 一、MATLAB 颜色值 ---- 如果系统定义的颜色值不够用 , 可以使用 \rm [R,G,...silver = [29, 27, 17, 26, 8]; % 铜牌数量 bronze = [29, 23, 19, 32, 7]; % 绘制条形图 , 返回一个 1 x 3 的 Bar 数组 h...Bar 数组: Bar Bar Bar 完整执行过程 : 三、查找条形图相关属性 ---- bar 函数执行结果 , 返回值 h 是一个 1 x 3 的 Bar 数组 , 每个元素都是一个...Bar 对象 ; % 绘制条形图 , 返回一个 1 x 3 的 Bar 数组 h = bar(1:5, [gold' silver' bronze']); 在 Figure 1 对话框中 , 选择 "...13]; % 银牌数量 silver = [29, 27, 17, 26, 8]; % 铜牌数量 bronze = [29, 23, 19, 32, 7]; % 绘制条形图 , 返回一个 1 x

    5.4K30

    Matplotlib可视化没那么难:7种常用图表最全绘制攻略来了!

    散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。在广告数据分析中,我们通常会根据散点图来分析两个变量之间的数据分布关系。散点图的主要参数及其说明如下。...▲图1 散点图 02 条形图 条形图是用宽度相同的条形的高度或长度来表示数据多少的图形。条形图可以横置或纵置,纵置时也称为柱状图。此外,条形图有简单条形图、复式条形图等形式。...▲图2 条形图 03 折线图 折线图是用直线连接排列在工作表的列或行中的数据点而绘制成的图形。折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示相等时间间隔下数据的趋势。...默认值:False,即不画阴影 labeldistance:label标记的绘制位置,相对于半径的比例,默认值为1.1, 如绘制在饼图内侧 autopct:控制饼图内百分比设置,可以使用format...▲图7 水平箱形图 07 组合图 前面介绍的都是在figure对象中创建单独的图像,有时候我们需要在同一个画布中创建多个子图或者组合图,此时可以用add_subplot创建一个或多个subplot来创建组合图

    8.4K31

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    3.1K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    本文经AI新媒体量子位(QbitAI)授权转载,转载请联系出处 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    3.1K20

    Python-matplotlib 学术柱状图绘制

    引言 柱状图或条形图在学术论文中使用的频率还是很大的,图中需要以不同颜色对不同数据进行区分,但当涉及黑白打印时,色彩颜色的区别度较小,导致难以理解,因此需要绘制黑灰颜色或者黑白阴影的柱状图或者条形图,下面就具体介绍使用...上述的图表对一般的期刊图表要求基本可以满足,打印时的效果也还不错。当然也可以使用纹理填充,涉及的主要参数为hatch 属性设置。...patternplot软件包是用于在R中创建美观且内容丰富的饼图,环形图,条形图和箱形图的工具。它可以用颜色或纹理或png中的任何外部图像填充饼图,环形图,条形图和箱形图或jpeg格式。...同时也可以看到 R 在绘制图表上的功能完善性(有各种拓展包用于不同类型图表绘制),如绘制纹理填充方面,patternplot包 就非常实用。...学术图表绘制需要准备较多的素材数据,更新难免有所缓慢,但会坚持下去。自己能力有限,难免会有出错,如发现可以后台留言或进群讨论。

    5.3K30

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    3.1K20

    利用热图与径向条形图探索公司的塑料废物情况

    fig, ax = plt.subplots(figsize=(, )) plot_heatmap(ax); output_15_0 绘制径向形条形图 # 自定义颜色,这里需要绘制top6公司的径向条形图...            fontsize=, bbox=bbox_dict         )     return ax def plot_circular(axes):     '''     通过极坐标绘制多个公司的径向条形图...循环绘制在多个子图上     '''     axes_flattened = axes.ravel() # 将接收的子图对象数组进行降维,返回一个一维的子图对象数组     companies = top_seven...        ax = axes_flattened[i]                  # 在第一个子图上,设置 y 轴的标签("Type of plastic")。         ...0.25, right=0.5, top=0.85) # 在上述网格图中绘制子图 ax = fig.add_subplot(gs1[]) # 绘制热图 plot_heatmap(ax) # 创建一个空列表存放六个极坐标图的轴对象

    22000

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    晓查 编译整理 量子位 出品 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    2.1K10

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    整理 | 晓查 来自 | 量子位 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    2.3K50

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    晓查 编译整理 量子位 出品 | 公众号 QbitAI 数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。

    2.4K10

    计算与推断思维 六、可视化

    现在我们可以使用这个表格,以及我们上面获得的图形技能来绘制条形图,显示前 200 个最高收入的电影中,哪个工作室是最常见的。...对于我们的主要示例,我们将返回到我们在可视化分类数据时,所研究的数据集。这是一个表格,它由美国历史上最畅销的电影中的数据组成。为了方便起见,这里再次描述表格。 第一列包含电影的标题。...这种绘制直方图的方法创建了一个垂直轴,它是在密度刻度上的。条形的高度不是桶中条目的百分比;它是桶中的条目除以桶的宽度。这就是为什么高度衡量拥挤度或密度。 让我们看看为什么这很重要。...当使用这种方法绘制时,直方图被称为在密度刻度上绘制。 在这个刻度上: 每个条形的面积等于相应桶中的数据值的百分比。 直方图中所有条形的总面积为 100%。...直接比较列是有意义的,因为所有条目都是比例,因此在相同刻度上。 barh方法允许我们通过在相同轴域上绘制多个条形图,将比较可视化。这个调用类似于scatter和plot:我们必须指定类别的公共轴。

    3.3K20

    Pandas可视化综合指南:手把手从零教你绘制数据图表

    导读:数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。...在数据帧上进行操作的plot()函数只是matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。...此外,Pandas中还有一个辅助函数pandas.plotting.table,它创建一个来自数据帧的表格,并将其添加到matplotlib Axes实例中。...04 其他高阶用法 可以使用stacked参数来绘制带有条形图的堆叠图。在这里,我们绘制堆叠的水平条,stacked设置为True。 ? 将grid参数设置为True,可以给图表加入网格。 ?...当subplot 设置为True 时,在设置一组title的值,即可在列表上方加入标题。 ?

    2.1K30
    领券