首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

业务数据入湖

业务数据入湖是指将业务数据存储在湖中,以便进行大规模数据处理和分析。湖是一种大规模、高吞吐量、低延迟的数据存储和处理系统,可以支持实时数据处理和分析。

在业务数据入湖中,数据通常会被转换为结构化或半结构化的格式,以便在湖中进行处理和分析。湖可以处理大量的数据,并且可以支持多种数据格式和数据类型,包括结构化数据、半结构化数据、非结构化数据和实时数据。

业务数据入湖的优势包括:

  1. 可扩展性:湖可以支持大规模数据存储和处理,可以根据业务需求进行扩展。
  2. 低延迟:湖可以支持实时数据处理和分析,可以快速响应业务需求。
  3. 数据安全:湖可以提供数据加密和访问控制,保证数据的安全性和隐私性。
  4. 数据处理能力:湖可以支持多种数据处理和分析功能,包括数据清洗、数据转换、数据聚合和数据挖掘等。

业务数据入湖的应用场景包括:

  1. 数据仓库:湖可以作为数据仓库,存储和管理大量的业务数据,支持数据分析和报表生成。
  2. 实时数据处理:湖可以支持实时数据处理和分析,可以快速响应业务需求。
  3. 数据挖掘:湖可以支持数据挖掘和机器学习,可以发现业务数据中的隐藏信息和趋势。

推荐的腾讯云相关产品:

腾讯云提供了多种湖相关的产品,可以支持业务数据入湖。其中包括:

  1. 腾讯云 TDSQL:TDSQL 是一种支持湖的数据库服务,可以支持实时数据处理和分析。
  2. 腾讯云 TKE:TKE 是一种容器管理服务,可以支持业务数据入湖和数据处理。
  3. 腾讯云 CLS:CLS 是一种日志服务,可以支持业务数据入湖和数据处理。

产品介绍链接地址:

  1. TDSQL:https://cloud.tencent.com/product/tdsql
  2. TKE:https://cloud.tencent.com/product/tke
  3. CLS:https://cloud.tencent.com/product/cls
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

COS 数据湖最佳实践:基于 Serverless 架构的入湖方案

这篇文章就数据湖的入湖管道为大家详细解答关于 COS 数据湖结合 Serverless 架构的入湖方案。...传统数据湖架构分入湖与出湖两部分,在上图链路中以数据存储为轴心,数据获取与数据处理其实是入湖部分,数据分析和数据投递其实算是数据出湖部分。...由事件触发的工作负载可以使用云函数来实现,利用不同云服务满足不同的业务场景和业务需求,使得数据湖架构更加健壮。...降低开销,函数在未执行时不产生任何费用,所以对一些无需常驻的业务进程来说,开销将大幅降低。函数执行时按请求数和计算资源的运行时间收费,相比于自建集群部署入湖,价格优势明显。...可定制,用户可通过模版快速创建通用入湖场景,也可根据自己的业务对数据流进行定制化的 ETL 处理,更方便灵活。

1.8K40

基于Apache Hudi 的CDC数据入湖

CDC数据入湖方法 基于CDC数据的入湖,这个架构非常简单。...下图是典型CDC入湖的链路。上面的链路是大部分公司采取的链路,前面CDC的数据先通过CDC工具导入Kafka或者Pulsar,再通过Flink或者是Spark流式消费写到Hudi里。...这是阿里云数据库OLAP团队的CDC入湖链路,因为我们我们做Spark的团队,所以我们采用的Spark Streaming链路入湖。...整个入湖链路也分为两个部分:首先有一个全量同步作业,会通过Spark做一次全量数据拉取,这里如果有从库可以直连从库做一次全量同步,避免对主库的影响,然后写到Hudi。...2015年社区主席发表了一篇增量处理的文章,16年在Uber开始投入生产,为所有数据库关键业务提供了支撑;2017年,在Uber支撑了100PB的数据湖,2018年随着云计算普及,吸引了国内外的使用者;

1.2K10
  • 基于Apache Hudi 的CDC数据入湖

    02 CDC数据入湖方法 基于CDC数据的入湖,这个架构非常简单。...下图是典型CDC入湖的链路。上面的链路是大部分公司采取的链路,前面CDC的数据先通过CDC工具导入Kafka或者Pulsar,再通过Flink或者是Spark流式消费写到Hudi里。...这是阿里云数据库OLAP团队的CDC入湖链路,因为我们我们做Spark的团队,所以我们采用的Spark Streaming链路入湖。...整个入湖链路也分为两个部分:首先有一个全量同步作业,会通过Spark做一次全量数据拉取,这里如果有从库可以直连从库做一次全量同步,避免对主库的影响,然后写到Hudi。...2015年社区主席发表了一篇增量处理的文章,16年在Uber开始投入生产,为所有数据库关键业务提供了支撑;2017年,在Uber支撑了100PB的数据湖,2018年随着云计算普及,吸引了国内外的使用者;

    1.7K30

    基于Flink CDC打通数据实时入湖

    在构建实时数仓的过程中,如何快速、正确的同步业务数据是最先面临的问题,本文主要讨论一下如何使用实时处理引擎Flink和数据湖Apache Iceberg两种技术,来解决业务数据实时入湖相关的问题。...通过以上分析,基于Flink SQL CDC的数据同步有如下优点: 业务解耦:无需入侵业务,和业务完全解耦,也就是业务端无感知数据同步的存在。 性能消耗:业务数据库性能消耗小,数据同步延迟低。...数据入湖分为append和upsert两种方式。...并增加小文件监控、定时任务压缩小文件、清理过期数据等功能。 2,准实时数仓探索 本文对数据实时入湖从原理和实战做了比较多的阐述,在完成实时数据入湖SQL化的功能以后,入湖后的数据有哪些场景的使用呢?...历史好文推荐 郑州有哪些牛逼的互联网企业 数据湖比数据仓库香在哪? 结合公司业务搞懂数仓建设 流式ETL实践方案

    1.6K20

    【数据湖】塑造湖:数据湖框架

    准确性——当数据量不同、来源和结构不同以及它们到达湖的速度不同时,我们如何保持准确性和准确性? 同时管理所有四个是挑战的开始。 很容易将数据湖视为任何事物的倾倒场。...框架 我们把湖分成不同的部分。关键是湖中包含各种不同的数据——一些已经过清理并可供业务用户使用,一些是无法辨认的原始数据,需要在使用之前进行仔细分析。...我们有一个原始数据的登陆区域,一个过渡区域,在此区域中,数据被清理、验证、丰富和增强,并添加了额外的来源和计算,然后最终被放置在一个可供业务使用的精选区域中。...我们不会在没有业务驱动的情况下获取数据并对其进行丰富/清理/处理,这不是我们为了好玩而做的事情。因此,我们可以为它分配一个项目或系统名称,此时它被组织到这些终端系统中。...QQ群 【792862318】深度交流企业架构,业务架构,应用架构,数据架构,技术架构,集成架构,安全架构。以及大数据,云计算,物联网,人工智能等各种新兴技术。

    63820

    数据湖(一):数据湖概念

    数据湖概念一、什么是数据湖数据湖是一个集中式的存储库,允许你以任意规模存储多个来源、所有结构化和非结构化数据,可以按照原样存储数据,无需对数据进行结构化处理,并运行不同类型的分析对数据进行加工,例如:大数据处理...Kappa架构缺陷如下:Kafka无法支持海量数据存储。对于海量数据量的业务线来说,Kafka一般只能存储非常短时间的数据,比如最近一周,甚至最近一天。...数据湖技术可以很好的实现存储层面上的“批流一体”,这就是为什么大数据中需要数据湖的原因。...三、数据湖与数据仓库的区别数据仓库与数据湖主要的区别在于如下两点:存储数据类型数据仓库是存储数据,进行建模,存储的是结构化数据;数据湖以其本源格式保存大量原始数据,包括结构化的、半结构化的和非结构化的数据...因为数据湖是在数据使用时再定义模型结构,因此提高了数据模型定义的灵活性,可满足更多不同上层业务的高效率分析诉求。图片图片

    1.5K94

    基于Apache Hudi + Flink的亿级数据入湖实践

    随着实时平台的稳定及推广开放,各种使用人员有了更广发的需求: •对实时开发来说,需要将实时sql数据落地做一些etl调试,数据取样等过程检查;•数据分析、业务等希望能结合数仓已有数据体系,对实时数据进行分析和洞察...,比如用户行为实时埋点数据结合数仓已有一些模型进行分析,而不是仅仅看一些高度聚合化的报表;•业务希望将实时数据作为业务过程的一环进行业务驱动,实现业务闭环;•针对部分需求,需要将实时数据落地后,结合其他数仓数据...当时Flink+Hudi社区还没有实现,我们参考Flink+ORC的落数据的过程,做了实时数据落地的实现,主要是做了落数据Schema的参数化定义,使数据开发同事能shell化实现数据落地。 4....为了提高可用性,我们主要做了以下辅助功能; •Hive表元数据自动同步、更新;•Hudi schema自动拼接;•任务监控、Metrics数据接入等 实际使用过程如下 整套体系上线后,各业务线报表开发...,实时在线分析等方面都有使用,比较好的赋能了业务,上线链路共26条,单日数据落入约3亿条左右 5.

    90031

    Flink CDC + Hudi 海量数据入湖在顺丰的实践

    顺丰是快递物流服务提供商,主营业务包含了时效快递、经济快递、同城配送以及冷链运输等。...image.png 上图为 Flink + Canal 的实时数据入湖架构。...Upsert 或 Merge 写入才能剔除重复的数据,确保数据的最终一致性; 需要两套计算引擎,再加上消息队列 Kafka 才能将数据写入到数据湖 Hudi 中,过程涉及组件多、链路长,且消耗资源大...frc-64c3f137b1c9eaf11ea3f1d1c15b5820.jpg Flink CDC 很好地解决了业务痛点,并且在可扩展性、稳定性、社区活跃度方面都非常优秀。...上述整个流程中存在两个问题:首先,数据多取,存在数据重复,上图中红色标识即存在重复的数据;其次,全量和增量在两个不同的线程中,也有可能是在两个不同的 JVM 中,因此先发往下游的数据可能是全量数据,也有可能是增量数据

    1.2K20

    腾讯主导 Apache 开源项目: InLong(应龙)数据入湖原理分析

    WeData 数据集成完全基于 Apache InLong 构建,本文阐述的 InLong 数据入湖能力可以在 WeData 直接使用。...在各种数据湖的场景中,Iceberg 都能够发挥重要的作用,提高数据湖的可用性和可靠性,同时也为用户带来了更好的数据管理和查询体验。...入 Iceberg 实现原理 InLong 分拣模块简介 Sort 意为分拣, InLong Sort 负责将业务数据分拣写入到指定的库表中。...Sort on Flink 入 Iceberg 上图为 Sort on Flink 主要流程,入 Iceberg 任务由三个算子一个分区选择器组成,Source 算子从源端拉取数据, Key Selector...InLong 入 Iceberg 的能力已在 WeData 产品化,欢迎感兴趣的业务试用。

    63010

    数据湖

    语义能力方面比较吃力 >架构复杂,涉及多个系统协调,靠调度系统来构建任务依赖关系 2.Lambda 架构 >同时维护实时平台和离线平台两套引擎,运维成本高 >实时离线两个平台需要维护两套框架不同但业务逻辑相同代码...>支持实现分钟级到秒级的数据接入,实效性和Kappa 架构比略差 下面我们看下网上对于主流数据湖技术的对比 ?...从上图中我们可以看到hudi和iceberg的功能较齐全,下面我们将从如下几方面来 1.元数据打通 2.flink读写数据湖 3.增量更新 4.对事务的支持 5.对于写入hdfs小文件合并的支持 6.湖中的数据和仓中的数据的联通测试...7.高效的回缩能力 8.支持Schema变更 9.支持批流读写 9.支持批流读写 说完了技术体现,下面我们在简单说一下数据湖和数仓的理论定义 数据湖 其实数据湖就是一个集中存储数据库,用于存储所有结构化和非结构化数据...数据湖可用其原生格式存储任何类型的数据,这是没有大小限制。数据湖的开发主要是为了处理大数据量,擅长处理非结构化数据。 我们通常会将所有数据移动到数据湖中不进行转换。

    63930

    Dinky 构建 Flink CDC 整库入仓入湖

    》,带了新的数据入仓入湖架构。...如何简化实时数据入湖入仓》总结为以下四点: 1.全增量切换问题 该CDC入湖架构利用了 Hudi 自身的更新能力,可以通过人工介入指定一个准确的增量启动位点实现全增量的切换,但会有丢失数据的风险。...3.Schema 变更导致入湖链路难以维护 表结构的变更是经常出现的事情,但它会使已存在的 FlinkCDC 任务丢失数据,甚至导致入湖链路挂掉。...4.整库入湖 整库入湖是一个炙手可热的话题了,目前通过 FlinkCDC 进行会存在诸多问题,如需要定义大量的 DDL 和编写大量的 INSERT INTO,更为严重的是会占用大量的数据库连接,对 Mysql...此外 Dinky 还支持了整库同步各种数据源的 sink,使用户可以完成入湖入仓的各种需求,欢迎验证。

    4.5K20

    【数据湖仓】数据湖和仓库:范式简介

    博客系列 数据湖和仓库第 1 部分:范式简介 数据湖和仓库第 2 部分:Databricks 和雪花 数据湖和仓库第 3 部分:Azure Synapse 观点 两种范式:数据湖与数据仓库 基于一些主要组件的选择...,云分析解决方案可以分为两类:数据湖和数据仓库。...数据湖:去中心化带来的自由 数据湖范式的核心原则是责任分散。借助大量工具,任何人都可以在访问管理的范围内使用任何数据层中的数据:青铜、白银和黄金。...集中式数据湖元数据管理工具越来越多,但使用它们取决于开发过程。技术很少强制这样做。 结论:数据湖和数据仓库 在这篇文章中,我们讨论了数据仓库和基于数据湖的解决方案的基本方法或范式的差异。...QQ群 【792862318】深度交流企业架构,业务架构,应用架构,数据架构,技术架构,集成架构,安全架构。以及大数据,云计算,物联网,人工智能等各种新兴技术。

    62110

    Dlink 在 FinkCDC 流式入湖 Hudi 的实践分享

    摘要:本文介绍了我们基于 Dlink 来建设 FlinkCDC 流式入湖 Hudi Sync Hive 的实践分享。...内容包括: 背景资料 准备部署 数据表 调试 结论 一、背景资料 Apache Hudi (发音为“ hoodie”)是下一代流式数据湖平台。...目前业务架构较为繁重 维护多套框架 数据更新频率较大 二、背景 组件 版本 备注 Flink 1.13.5 集成到 CM Flink-SQL-CDC 2.1.1 Hudi 0.10.0-patch 打过补丁...删除数据操作 (内部业务中采用逻辑删除 不使用物理删除 此例仅演示/测试使用 谨慎操作) delete from `order`....五、结论 通过 Dlink + Flink-CDC + Hudi 的方式大大降低了我们流式入湖的成本,其中 Flink-CDC 简化了传统 CDC 的架构与建设成本,而 Hudi 高性能的读写更有利于频繁变动数据的存储

    1.4K30

    基于TIS构建Apache Hudi千表入湖方案

    Hudi数据湖方案比传统的Hive数仓的优势是加入了数据实时同步功能, 可以通过最新的Flink流计算引擎来以最小的成实现数据实时同步。...TIS采用两种方式实现数据入湖: 1....DeltaStreamer: 该方法实现批量数据导入,通过DataX将数据表中数据以avro格式导入到HDFS中,之后启动DeltaStreamer通过Spark RDD消费HDFS中的原始数据进行数据入湖...Hadoop 2.7.3 Apache Flink tis-1.13.1(基于Flink 1.13.1 定制,解决不同组件Source,Sink之间可能存在的三方依赖包冲突) 创建MySQL到Hudi千表入湖通道...TIS会解析Reader选取的表元数据信息,自动生成Flink Stream Code 在该版本中,自动生成的Flink Stream Code还不支持用户自定义编写业务逻辑 6.

    1.7K10

    漫谈“数据湖”

    这对于数据探索类需求,带来很大便利,可以直接得到原始数据。 数据湖统一企业内部各个业务系统数据,解决信息孤岛问题。为横跨多个系统的数据应用,提供一种可能。...因为数据湖是在数据到使用时再定义模型结构,因此提高了数据模型定义的灵活性,可满足更多不同上层业务的高效率分析诉求。...3)工作合作方式 传统的数据仓库的工作方式是集中式的,业务人员给需求到数据团队,数据团队根据要求加工、开发成维度表,供业务团队通过BI报表工具查询。...数据湖更多是开放、自助式的(self-service),开放数据给所有人使用,数据团队更多是提供工具、环境供各业务团队使用(不过集中式的维度表建设还是需要的),业务团队进行开发、分析。...平台化的数据湖架构能否驱动企业业务发展,数据治理至关重要。这也是对数据湖建设的最大挑战之一。

    1.7K30

    从数据湖到元数据湖——TBDS新一代元数据湖管理

    所以在Data+AI 时代,面对AI非结构化数据和大数据的融合,以及更复杂跨源数据治理能力的诉求,TBDS开发了第三阶段的全新一代统一元数据湖系统。...02、新一代元数据湖管理方案 TBDS全新元数据湖系统按照分层主要有统一接入服务层、统一Lakehouse治理层、统一元数据权限层、统一Catalog模型连接层。...我们引入了Gravitino并且基于它在数据治理、数据权限等能力上做了大量的TBDS已有能力的合入优化,形成一个闭环、完整的系统。...统一接入服务对外提供开放标准的API接口给用户或引擎对元数据湖的各种操作,提供JDBC、REST API和Thrift协议三种方式访问元数据。...因此Proxy服务基本没有太多业务逻辑,只做定时同步构建内存策略树和接收REST请求本地内存鉴权,相比有很多锁操作有状态的Ranger Admin来说Proxy是一个非常轻量级无状态的服务,可以平行无限扩展分摊压力

    55610

    基于Apache Hudi和Debezium构建CDC入湖管道

    从 Hudi v0.10.0 开始,我们很高兴地宣布推出适用于 Deltastreamer[1] 的 Debezium 源[2],它提供从 Postgres 和 MySQL 数据库到数据湖的变更捕获数据...背景 当想要对来自事务数据库(如 Postgres 或 MySQL)的数据执行分析时,通常需要通过称为更改数据捕获[4] CDC的过程将此数据引入数据仓库或数据湖等 OLAP 系统。...现在 Apache Hudi[6] 提供了 Debezium 源连接器,CDC 引入数据湖比以往任何时候都更容易,因为它具有一些独特的差异化功能[7]。...Hudi 独特地提供了 Merge-On-Read[8] 写入器,与使用 Spark 或 Flink 的典型数据湖写入器相比,该写入器可以显着降低摄取延迟[9]。...现在可以将数据库数据提取到数据湖中,以提供一种经济高效的方式来存储和分析数据库数据。请关注此 JIRA[20] 以了解有关此新功能的更多信息。

    2.2K20

    漫谈“数据湖”

    这对于数据探索类需求,带来很大便利,可以直接得到原始数据。 优点:数据湖统一企业内部各个业务系统数据,解决信息孤岛问题。为横跨多个系统的数据应用,提供一种可能。...因为数据湖是在数据到使用时再定义模型结构,因此提高了数据模型定义的灵活性,可满足更多不同上层业务的高效率分析诉求。...工作合作方式 传统的数据仓库的工作方式是集中式的,业务人员给需求到数据团队,数据团队根据要求加工、开发成维度表,供业务团队通过BI报表工具查询。...而数据湖更多是开放、自助式的(self-service),开放数据给所有人使用,数据团队更多是提供工具、环境供各业务团队使用(不过集中式的维度表建设还是需要的),业务团队进行开发、分析。...平台化的数据湖架构能否驱动企业业务发展,数据治理至关重要。这也是对数据湖建设的最大挑战之一。

    1K30

    【数据湖】扫盲

    什么是数据湖 数据湖是一种以原生格式存储各种大型原始数据集的数据库。您可以通过数据湖宏观了解自己的数据。 原始数据是指尙未针对特定目的处理过的数据。数据湖中的数据只有在查询后才会进行定义。...为什么出现了数据湖的概念 数据湖可为您保留所有数据,在您存储前,任何数据都不会被删除或过滤。有些数据可能很快就会用于分析,有些则可能永远都派不上用场。...数据从多种来源流入湖中,然后以原始格式存储。 数据湖和数据仓库的差别是什么? 数据仓库可提供可报告的结构化数据模型。这是数据湖与数据仓库的最大区别。...数据湖架构 数据湖采用扁平化架构,因为这些数据既可能是非结构化,也可能是半结构化或结构化,而且是从组织内的各种来源所收集,而数据仓库则是把数据存储在文件或文件夹中。数据湖可托管于本地或云端。...他们还可以利用大数据分析和机器学习分析数据湖中的数据。 虽然数据在存入数据湖之前没有固定的模式,但利用数据监管,你仍然可以有效避免出现数据沼泽。

    57230
    领券