说到python与数据分析,那肯定少不了pandas的身影,本文希望通过分析经典的NBA数据集来系统的全方位讲解pandas包,建议搭配IDE一遍敲一边读哦。话不多说,开始吧!...目录 安装与数据介绍 安装与配置 检查数据 探索性分析 pandas数据结构 series对象 dataframe对象 访问series元素 使用索引 使用.loc与.iloc 访问dataframe元素...6位,而对于分析来说并没有必要,所以我们调整为小数点后两位 >>> pd.set_option("display.precision", 2) 检查数据 之前已经使用Pandas Python库导入了...Series对象 Python最基本的数据结构是list,这也是了解pandas.Series对象的一个很好的起点。...使用.loc和.iloc会发现这些数据访问方法比索引运算符更具可读性。因为在之前的文章中已经详细的介绍了这两种方法,因此我们将简单介绍。更详细的可以查看【公众号:早起python】之前的文章。
DataFrame和Series是Pandas最基本的两种数据结构 可以把DataFrame看作由Series对象组成的字典,其中key是列名,值是Series Series和Python..., 需要注意 Pandas里面没有一种数据结构对应行的概念 创建DataFrame name_list = pd.DataFrame({'姓名':['Tome','Bob'],'职业':['AI工程师'...查看数据类型及属性 # 查看df类型 type(df) # 查看df的shape属性,可以获取DataFrame的行数,列数 df.shape # 查看df的columns属性,获取DataFrame...中的列名 df.columns # 查看df的dtypes属性,获取每一列的数据类型 df.dtypes df.info() Pandas与Python常用数据类型对照 加载筛选数据 df根据列名加载部分列数据...传入的是索引的序号,loc是索引的标签 使用iloc时可以传入-1来获取最后一行数据,使用loc的时候不行 loc和iloc属性既可以用于获取列数据,也可以用于获取行数据 df.loc[[行],[列]
---- 答案:A、B、D 解析: A:是 pandas 提供的指定方法,此外还有 df.tail 可以查看倒数n笔记录 B:df.iloc 可以指定位置索引,从而得到记录。...刚好本题加载数据时没有指定行索引,因此默认的行索引的值与位置索引一致。因此本答案有效。但是这是取巧的做法,如果行索引改变,那么此写法将导致错误结果。因此不推荐使用。...---- 答案:B、C、D B:df 本质上是通过 numpy 数组保存数据,为了与 numpy 尽可能保持用法一致,因此 pandas 为 df 设置了 shape 属性,能获取二维长度,他是一个元组...(行,列) C:len 是一个 python 的函数,可以获取任何集合对象的长度。...---- 答案:B、D、E B:df 本质上是通过 numpy 数组保存数据,为了与 numpy 尽可能保持用法一致,因此 pandas 为 df 设置了 shape 属性,能获取二维长度,他是一个元组
7.5 数据索引和选择 原文:Data Indexing and Selection 译者:飞龙 协议:CC BY-NC-SA 4.0 本节是《Python 数据科学手册》(Python Data...序列中的数据选择 我们在上一节中看到,Series对象在很多方面都像一维 NumPy 数组,并且在许多方面像标准的 Python 字典。...Python 风格索引: data.iloc[1] # 'b' data.iloc[1:3] ''' 3 b 5 c dtype: object ''' 第三个索引属性ix是两者的混合...loc和iloc的显式特性,使它们在维护清晰可读的代码时非常有用;特别是在整数索引的情况下,我建议使用这两者,来使代码更容易阅读和理解,并防止由于混合索引/切片约定而导致的细微错误。...149995 New York 141297 Texas 695662 Name: area, dtype: int64 ''' 属性风格的列访问,与字典风格的访问,实际上访问了完全相同的对象
有时会在没有明显的链式索引的情况下出现SettingWithCopy警告。这些就是SettingWithCopy旨在捕捉的错误!...如果您正在使用 IPython 环境,还可以使用制表符补全来查看这些可访问的属性。....iloc属性是主要访问方法。以下是有效的输入: 一个整数例如5。 一个整数数组或列表[4, 3, 0]。 一个带有整数1:7的切片对象。 一个布尔数组。...') In [322]: 5 in index Out[322]: True 如果没有指定数据类型,Index 将尝试从数据中推断数据类型。...有时会在没有明显的链式索引的情况下出现SettingWithCopy警告。这些是SettingWithCopy旨在捕获的错误!
上一篇总结了Python数据处理包Pandas的DataFrame,介绍了Axes相关的属性和方法。文章的图形展示效果不是很友好,再换一种形式。 同时继续总结,数据框的访问相关的属性和方法。...01 轴(Axes) 相关 构造一个数据框 In [1]: import datetime as dt In [3]: import pandas as pd In [4]: df = pd.DataFrame...对象 In [52]: df.get('id').get('p2').item() # item返回Python原生对象Out[52]: 3In [55]: type(df.get('id...数据读取的常见错误 头条、阿里、快手、百度面试实录 ?...Python数据与机器学习 致力于做最有态度、走心的原创公众号 长按二维码订阅 ? 给个好看
1.2 Pandas中的数据结构 对于pandas这种数据分析库而已,我们都可以通过与传统的集合对象来理解,pandas提供了类似集合的数据结构,也提供了对应属性和方法,我们只需要把数据封装到pandas...index:表示传入的索引,必须是唯一的,且与数据的长度相同。若没有传入索引,则创建的Series类对象会自动生成0~N的整数索引。 dtype:表示数据的类型。...pandas中可以使用[]、loc、iloc、at和iat这几种方式访问Series类对象和DataFrame类对象的数据。...使用loc和iloc访问数据 pandas中也可以使用loc和iloc访问数据。...1.5.3.2 使用分层索引访问数据 掌握分层索引的使用方式,可以通过[]、loc和iloc访问Series类对象和DataFrame类对象的数据 pandas中除了可以通过简单的单层索引访问数据外,
import sys sys.path 您可能遇到此错误的一种方法是,如果您的系统上安装了多个 Python,并且您当前使用的 Python 安装中没有安装 pandas,则可能会遇到此错误。...import sys sys.path 您可能遇到此错误的一种方式是,如果您的系统上有多个 Python 安装,并且您当前使用的 Python 安装中没有安装 pandas。...import sys sys.path 您可能遇到此错误的一种方式是,如果您的系统上有多个 Python 安装,并且您当前使用的 Python 安装中没有安装 pandas。...通过请求 pandas 的dtypes属性,可以检查 pandas 如何解释每列的数据类型: In [5]: titanic.dtypes Out[5]: PassengerId int64...此DataFrame中的数据类型为整数(int64)、浮点数(float64)和字符串(object)。 注意 请求dtypes时,不使用括号!dtypes是DataFrame和Series的属性。
每个组件本身都是一个 Python 对象,具有自己的独特属性和方法。 通常,您希望对单个组件而不是对整个数据帧进行操作。...另见 Python 运算符官方文档 Python 数据模型官方文档 将序列方法链接在一起 在 Python 中,每个变量都是一个对象,并且所有对象都具有引用或返回更多对象的属性和方法。...在这种情况下,静默意味着没有引发任何错误并且没有发出警告。 这有点危险,需要用户熟悉 Pandas。 数字列也缺少值,但返回了结果。 默认情况下,pandas 通过跳过数值列来处理缺失值。...因为将整个序列而不是每个元素作为True或False都没有意义,Pandas 都会引发错误。 Python 中的许多对象都具有布尔表示形式。 例如,除 0 以外的所有整数都被视为True。...空的数据帧或序列不会求值为True或False,而是会引发错误。 通常,要检索 Python 对象的真实性,请将其传递给bool函数。
是 Python 为解决数据分析而创建的,详情看官网 (https://pandas.pydata.org/)。...和学习 numpy 一样,学习 pandas 还是遵循的 Python 里「万物皆对象」的原则,既然把数据表当对象,我们就按着数据表的创建、数据表的存载、数据表的获取、数据表的合并和连接、数据表的重塑和透视...Series s 也是一个对象,用 dir(s) 可看出关于 Series 所有的属性和内置函数,其中最重要的是 用 s.values 打印 s 中的元素 用 s.index 打印 s 中的元素对应的索引...DataFrame 我们可以从头或从尾部查看 DataFrame 的 n 行,分别用 df2.head() 和 df2.tail(n),如果没有设定 n,默认值为 5 行。...原因是 Python 会把 df['idx_i'] 当成切片 columns,然后发现属性中没有 'idx_i' 这一个字符,会报错的。 个人建议,只用 loc 和 iloc。
启用自动和明确的数据对齐。 允许直观地获取和设置数据集的子集。 在本节中,我们将重点放在最后一点上:即如何切片、切块和通常获取和设置 pandas 对象的子集。...注意 Python 和 NumPy 索引运算符 [] 和属性运算符 . 提供了对 pandas 数据结构的快速简便访问,适用于各种用例。...查看更多内容请参考按位置选择,高级索引和高级分层。 .loc、.iloc,以及[]索引可以接受callable作为索引器。查看更多内容请参考按 callable 选择。...如果您在 IPython 环境中使用,还可以使用制表符补全来查看这些可访问的属性。....iloc属性是主要访问方法。以下是有效的输入: 一个整数,例如5。 一个整数列表或数组[4, 3, 0]。 一个带有整数1:7的切片对象。 一个布尔数组。
数据查看、转置 2. 添加、修改、删除值 3. 排序 3.2.5 Index索引对象 1.索引对象概述 2. 索引对象操作 3....pandas中可以使用[]、loc、iloc、at和iat这几种方式访问Series类对象和DataFrame类对象的数据。...使用loc和iloc访问数据 pandas中也可以使用loc和iloc访问数据。...使用分层索引访问数据 掌握分层索引的使用方式,可以通过[]、loc和iloc访问Series类对象和DataFrame类对象的数据 pandas中除了可以通过简单的单层索引访问数据外,还可以通过复杂的分层索引访问数据...使用loc和iloc访问数据 使用iloc和loc也可以访问具有分层索引的Series类对象或DataFrame类对象。
一般在jupyter的一个cell中只默认输出最后一行的变量,要想前面行的数据,需要调用print()方法; 其中,.iloc只按整数位置进行选择,其工作方式与Python列表类似,.loc只通过索引标签进行选择...打印: 花萼长度 花萼宽度 花瓣长度 花瓣宽度 类别 1 错误数据 错误数据 错误数据 错误数据 错误数据 2 错误数据 错误数据 错误数据 错误数据 错误数据 3 4.7...3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 错误数据 错误数据 错误数据 错误数据 错误数据 (8)缺失值处理 判断缺失值...(3)查看数据 查看movie_data表的规模: movie_data.shape 打印: (1000209, 10) 显然,合并后的表有3个属性。...查看Age属性的唯一值: movie_data['Age'].unique() 打印: array([ 1, 50, 25, 35, 18, 45, 56], dtype=int64) 可以看到,共有7
一、查看数据 数据表的基本信息查看 info() 在Python中,info()函数是pydoc模块中的一个函数,用于提供关于Python对象的详细信息的帮助文档。...示例 【例】请利用python查看上例中sales.csv文件中的数据表的大小,要求返回数据表中行的个数和列的个数。 关键技术:使用pandas库中DataFrame对象的shape()方法。...关键技术: dtype属性和dtypes属性 在上例代码的基础上,对于series数据可以用dtype查看,对于dataframe数据可以用dtypes查看,程序代码如下所示: 查看具体的数据分布...强制类型转换 在Python中,可以使用强制类型转换来将一个对象转换为另一种数据类型。下面是几种常见的强制类型转换的方法: int():将对象转换为整数类型。...iloc() 在Python中,iloc()函数是Pandas库中的一个用于根据索引位置选取数据的函数。iloc是"index location"的缩写。
---- 第01章 Pandas基础 第02章 DataFrame运算 第03章 数据分析入门 第04章 选取数据子集 第05章 布尔索引 第06章 索引对齐 第07章 分组聚合、过滤、转换...第08章 数据清理 第09章 合并Pandas对象 第10章 时间序列分析 第11章 用Matplotlib、Pandas、Seaborn进行可视化 ---- In[1]: import pandas...选取Series数据 # 读取college数据集,查看CITY的前5行 In[2]: college = pd.read_csv('data/college.csv', index_col='INSTNM...# 下面尝试选取两列,导致错误 In[55]: college[:10, ['CITY', 'STABBR']] -------------------------------------------..._getbool_axis(key, axis=axis) /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexing.py
一、简介 Pandas 是 Python 中的数据操纵和分析软件包,它是基于Numpy去开发的,所以Pandas的数据处理速度也很快,而且Numpy中的有些函数在Pandas中也能使用,方法也类似。...Pandas 为 Python 带来了两个新的数据结构,即 Pandas Series(可类比于表格中的某一列)和 Pandas DataFrame(可类比于表格)。...[:,0] out: a 1 b 3 Name: one, dtype: int64 访问多列 python df[['one','two']] df.iloc[:...,默认为False limit:接受int类型的输入,可以限定替换前多少个NaN 五、数据分析流程及Pandas应用 1、打开文件 python #打开csv文件 pd.read_csv...python #查看前五行 df.head() #查看尾五行 df.tail() #查看随机一行 df.sample() 3、查看数据信息 python #查看数据集行数和列数 df.shape #查看数据集信息
Contents 1 pandas 库概述 2 安装 pandas 3 pandas 库使用 4 pandas数据结构介绍 4.1 Series数据结构 4.2 DataFrame数据结构 4.3 索引对象...数据操作、准备、清洗是数据分析最重要的技能,pandas 是首选 python 库之一。...由于我们没有为数据指定索引,于是会自动创建一个 0 到 N-1( N 为数据的长度)的整数型索引。...索引对象 pandas 的索引对象负责管理轴标签和其他元数据(比如轴名称等)。...库的基本结构的一些特性,如何创建 pandas 对象、指定 columns 和 index 创建 Series 和 DataFrame 对象、赋值操作、属性获取、索引对象等,这章介绍操作 Series
想入门 Pandas,那么首先需要了解Pandas中的数据结构。因为Pandas中数据操作依赖于数据结构对象。Pandas中最常用的数据结构是 Series 和 DataFrame。...探索性分析 查看DataFrame数据信息 data.shape data.ndim # 获取数据的维度信息 data.index # 获取索引 data.columns #获取列名 查看数据行列对象信息...,我们只需要获取其中的值,因此指定 .values 属性。...sub.xs('1001A', axis=1) 简单绘图 在 Python可视化工具概览 中我们提到过数据处理和可视化一条龙服务的Pandas,Pandas不仅可以进行数据处理工作,而且其还封装了一些绘图方法...看这里 >>> Python简单高效的可视化神器——Seaborn 后面会继续介绍关于pandas的更多技巧和高级操作。
Pandas Python Data Analysis Pandas 是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于...Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。...Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。...panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型。...In [7]: #Series中会出现 引用传地址问题 nd1[0] = 1000 S[0] Out[7]: 6 In [8]: #对象.属性 S.a Out[8]: 6 In [9]: #key S
Pandas简介 Pandas也是Python数据分析和实战的必备工具包之一,它提供了快速灵活的数据结构,简单的直观的处理关系型数据。可以方便的处理像Excel或者数据库中这样的结构化的数据。...=False) 除了data,index,上面见到过,dtype跟NumPy中的一样的,还有name属性,就是可以给当前的Series对象赋值一个名字。...Pandas常用操作 查看数据 在更多的时候,做数据分析,往往会从外部读取数据,常用的读取从excel表格数据,DataFrame可以便捷的去读excel数据。...('movie.xlsx') print(df.head())#查看 DataFrame 头部数据 print(df.tail(2)) #查看 DataFrame 尾部数据 代码运行结果: 使用head...内连接得到两个对象中都有的数据,对象A中a列和对象B中的a列都有1。左连接以对象A的a列为准,对象B中a列中没有的值,则取空。右连接则以对象B的a列为准。外连接则查询出全部的数据。
领取专属 10元无门槛券
手把手带您无忧上云