日志内容是从零开始创建 WordPress 主题系列教程第五篇的第二部分,在这篇中,我们将展示如果显示博客日志的内容,并且使用一个 DIV 标签把博客日志的内...
通过一个仅有 5B 参数的预训练基线模型,他们优化了训练方法,并在多个 VLM 基准上实现了有竞争力以及新的 SOTA 结果。...论文地址:https://arxiv.org/pdf/2310.09199.pdf 下图为 5B PaLI-3 模型概览,其中通过对比预训练的 2B SigLIP 视觉模型,图像被单独地编码成了视觉 token...除了 5B PaLI-3 模型之外,研究者还利用最近提出的 SigLIP 方法,构建了一个参数扩展到 2B 的 SOTA 多语言对比视觉模型。
而PaLI-3仅拥有5B的参数量,在定位和文本理解等任务中表现出色,刷新了多个SOTA。 论文地址:https://arxiv.org/abs/2310.09199?
%5B%5D%5D%2B%5B%5D%5B%5B%5D%5D)%5B%2B!%2B%5B%5D%2B%5B%2B%5B%5D%5D%5D%2B(!%5B%5D%2B%5B%5D)%5B!...%5B%5D%2B%5B%5D)%5B%2B%5B%5D%5D%2B(%5B!%5B%5D%5D%2B%5B%5D%5B%5B%5D%5D)%5B%2B!...%5B%5D%2B%5B%5D)%5B%2B%5B%5D%5D%2B(%5B!%5B%5D%5D%2B%5B%5D%5B%5B%5D%5D)%5B%2B!...%5B%5D%2B%5B%5D)%5B%2B%5B%5D%5D%2B(%5B!%5B%5D%5D%2B%5B%5D%5B%5B%5D%5D)%5B%2B!...%5B%5D%2B%5B%5D%5B(!%5B%5D%2B%5B%5D)%5B%2B%5B%5D%5D%2B(%5B!%5B%5D%5D%2B%5B%5D%5B%5B%5D%5D)%5B%2B!
%5B%5D%2B%5B%5D)%5B%2B%5B%5D%5D%2B(%5B!%5B%5D%5D%2B%5B%5D%5B%5B%5D%5D)%5B%2B!...%5B%5D%2B%5B%5D)%5B%2B%5B%5D%5D%2B(%5B!%5B%5D%5D%2B%5B%5D%5B%5B%5D%5D)%5B%2B!...%5B%5D%2B%5B%5D)%5B%2B%5B%5D%5D%2B(%5B!%5B%5D%5D%2B%5B%5D%5B%5B%5D%5D)%5B%2B!...%5B%5D%2B%5B%5D)%5B%2B%5B%5D%5D%2B(%5B!%5B%5D%5D%2B%5B%5D%5B%5B%5D%5D)%5B%2B!...%5B%5D%5D%2B%5B%5D%5B(!%5B%5D%2B%5B%5D)%5B%2B%5B%5D%5D%2B(%5B!%5B%5D%5D%2B%5B%5D%5B%5B%5D%5D)%5B%2B!
%5D=sea_admin&tablename%5B%5D=sea_arcrank&tablename%5B%5D=sea_buy&tablename%5B%5D=sea_cck&tablename%5B...&tablename%5B%5D=sea_co_news&tablename%5B%5D=sea_co_type&tablename%5B%5D=sea_co_url&tablename%5B%5D=sea_comment...&tablename%5B%5D=sea_content&tablename%5B%5D=sea_count&tablename%5B%5D=sea_crons&tablename%5B%5D=sea_data...&tablename%5B%5D=sea_myad&tablename%5B%5D=sea_mytag&tablename%5B%5D=sea_news&tablename%5B%5D=sea_playdata...&tablename%5B%5D=sea_search_keywords&tablename%5B%5D=sea_tags&tablename%5B%5D=sea_temp&tablename%5B%5D
new_post_content=test2&logo_image_id=&feature_image_id= &gallery_image_ids=&post_status=pending&postcats%5B...3Cimg+src%3D%22evil.source%22%3E& 纬度=&经度=&new_tag=&phone=&fax=&contact-email=&contact_web=&award_title%5B...%5D=&award_description %5B%5D=& Award_year%5B%5D=&menu_title%5B%5D=&menu_description%5B%5D=&menu_price...%5B%5D=&menu_order%5B%5D=&room_title%5B%5D=&room_description%5B%5D=&room_price%5B%5D=& room_order %5B...%5D=& day_value2%5B%5D=&event-title=&event-detail=++&event_image_id=&user_post_id=&_wpnonce=50241bc992
%5D=5&disclosureType%5B%5D=5&disclosureSubtype%5B%5D=&page=&companyCd=&isNewThree=1&keyword=2023+%E5%...B9%B4%E6%97%A5%E5%B8%B8%E6%80%A7%E5%85%B3%E8%81%94%E4%BA%A4%E6%98%93&xxfcbj%5B%5D=3&hyType%5B%5D=&needFields...%5B%5D=companyCd&needFields%5B%5D=companyName&needFields%5B%5D=disclosureTitle&needFields%5B%5D=disclosurePostTitle...&needFields%5B%5D=destFilePath&needFields%5B%5D=publishDate&needFields%5B%5D=xxfcbj&needFields%5B%5D=...destFilePath&needFields%5B%5D=fileExt&needFields%5B%5D=xxzrlx&siteId=1&sortfield=xxssdq&sorttype=asc'
*%5D.mark_infos%5B*%5D.url%3Bdata%5B*%5D.author.follower_count%2Cvip_info%2Cbadge%5B*%5D.topics%3Bdata...*%5D.mark_infos%5B*%5D.url%3Bdata%5B*%5D.author.follower_count%2Cvip_info%2Cbadge%5B*%5D.topics%3Bdata...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cvip_info%2Cbadge%5B%2A%5D.topics...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cvip_info%2Cbadge%5B%2A%5D.topics...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cvip_info%2Cbadge%5B%2A%5D.topics
enews=DoCj&classid%5B%5D=11&classid%5B%5D=12&classid%5B%5D=13&classid%5B%5D=14&classid%5B%5D=15&classid...%5B%5D=16&classid%5B%5D=17&classid%5B%5D=18&classid%5B%5D=19&classid%5B%5D=20&Submit=%E6%89%B9%E9%87%
p2[]: 3 p3[]: 1 p3[]: 2 p3[]: 3 参数 p1=success&p2%5B...%5D=1&p2%5B%5D=2&p2%5B%5D=3&p3%5B%5D=1&p3%5B%5D=2&p3%5B%5D=3 返回 {"p1":"success","p2[]":"1...%5D=1&p2%5B%5D=2&p2%5B%5D=3&p3%5B%5D=1&p3%5B%5D=2&p3%5B%5D=3 返回 {"p1":"success","p2":"1,2,3...1,2,3],"p3":["1","2","3"]} === 前端 data:reqdata 参数 p1=success&p2%5B...%5D=1&p2%5B%5D=2&p2%5B%5D=3&p3%5B%5D=1&p3%5B%5D=2&p3%5B%5D=3 返回 400 Bad Request */ }
%5bCDATA%5b%5d%5d%3e%3c%2fitem%3e%3citem+id%3d%22margin%22%3e%3c!...%5bCDATA%5b%5d%5d%3e%3c%2fitem%3e%3citem+id%3d%22src%22%3e%3c!...%5bCDATA%5b%5d%5d%3e%3c%2fitem%3e%3citem+id%3d%22src%22%3e%3c!...%5bCDATA%5b%5d%5d%3e%3c%2fitem%3e%3citem+id%3d%22src%22%3e%3c!...%5bCDATA%5b%5d%5d%3e%3c%2fitem%3e%3citem+id%3d%22src%22%3e%3c!
include=data%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer...%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%...%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%...%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Darticle%29%5D.target.content%...2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dquestion%29%5D.target.comment_count
include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cbadge%5B%3F%28type%3Dbest_answerer...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cbadge%5B%3F%28type%3Dbest_answerer...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cbadge%5B%3F%28type%3Dbest_answerer...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cbadge%5B%3F%28type%3Dbest_answerer
include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action...2Cexcerpt%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_labeled%3Bdata%5B...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cbadge%5B%2A%5D.topics&limit=20&...include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cbadge%5B%2A%5D.topics&limit=20&
include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action...%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cis_recognized%3Bdata%5B...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cbadge%5B%2A%5D.topics%3Bdata%5B...include=data%5B%2A%5D.is_normal%2Cadmin_closed_comment%2Creward_info%2Cis_collapsed%2Cannotation_action...%2A%5D.mark_infos%5B%2A%5D.url%3Bdata%5B%2A%5D.author.follower_count%2Cbadge%5B%2A%5D.topics%3Bdata%5B
为了区分它们,我们标记为 5A 和 5B。 原始输入顺序: [ 3, 5A, 2, 5B, 1 ] 注意:这里 5A 在 5B 的前面。...排序后的结果: [ 1, 2, 3, 5B, 5A ] 这是不稳定排序: 因为 5A 和 5B 的位置发生了交换,5B 跑到了 5A 前面。 1.2 为什么稳定性很重要?...算法会将 5B 插入到 5A 的后面。 因此,原本在后面的 5B 依然在 5A 后面,相对顺序没有改变。...交换后的状态: [2, 8 , 5B , 5A , 9] 问题出现: 注意这里,5A被交换到了 5B的后面。...数组变为:[ 1, 3, 5B, 5A ] ④分析结果:在原数组中,5A 在 5B的前面,而在第一轮分区结束后,5A跑到了5B 的后面。 结论:相对顺序被改变,因此是不稳定的。