In[1]: import pandas as pd import numpy as np from IPython.display import display
参考链接: Python | pandas 合并merge,联接join和级联concat
Python 的一个优点是它在处理和操作字符串数据方面相对容易。Pandas 构建于此之上,并提供了一套全面的向量化字符串操作,它们成为处理(阅读“清理”部分)实际数据时所需的重要部分。在本节中,我们将介绍一些 Pandas 字符串操作,然后使用它们来部分清理从互联网收集的,非常混乱的食谱数据集。
一些最有趣的数据研究来自于不同的数据源的组合。这些操作可能涉及,从两个不同数据集的非常简单的连接,到更复杂的数据库风格的连接和合并,来正确处理数据集之间的任何重叠。Series和DataFrame是考虑到这类的操作而构建的,而 Pandas 包含的函数和方法使得这种数据整理变得快速而直接。
从大二开始接触A股,有幸见证了15年疯牛,最后落荒而逃,现在工作了又开始买入,可惜大A真是专治各种不服。。。现在的行情真是越来越难做了,所以还是想多多利用手头上的Python来换一套投资理念。接下来的文章,是我从Google上看到的,个人翻译给国内的好友们,希望大家喜欢。
时间序列(或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测。本文我们会分享如何用历史股票数据进行基本的时间序列分析(以下简称时序分析)。首先我们会创建一个静态预测模型,检测模型的效度,然后分享一些用于时序分析的重要工具。
可以看到,现在index和columns对应的位置有不同的值。因此,必须确保我们指定的列和行没有重复的数据,才可以用pivot函数
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
pandas是本书后续内容的首选库。它含有使数据清洗和分析工作变得更快更简单的数据结构和操作工具。pandas经常和其它工具一同使用,如数值计算工具NumPy和SciPy,分析库statsmodels和scikit-learn,和数据可视化库matplotlib。pandas是基于NumPy数组构建的,特别是基于数组的函数和不使用for循环的数据处理。 虽然pandas采用了大量的NumPy编码风格,但二者最大的不同是pandas是专门为处理表格和混杂数据设计的。而NumPy更适合处理统一的数值数组数据。
Python是一门广泛在各个行业应用的语言,包括计算机,生物学,金融。可以说,python除了不会生孩子,其他啥都行。本文将使用python来玩转股票数据,让你见识Python的强大。
可视化技术在任何投资分析中都是一种关键要素。今天公众号为大家介绍一个基于三角形图的Python项目,用于可视化长期投资指标!
这本 2015 年的 cookbook(由Julia Evans撰写)的目标是为您提供一些具体的示例,帮助您开始使用 pandas。这些都是使用真实数据的示例,以及所有相关的错误和怪异之处。有关目录,请参阅pandas-cookbook GitHub 仓库。
在本文中,我们将使用Python的Pandas库逐步完成许多不同的数据清理任务。具体而言,我们将重点关注可能是最大的数据清理任务,即 缺少值。
Python之数据规整化:清理、转换、合并、重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来。 pandas.concat可以沿着一条轴将多个对象
Python数据分析——数据加载与整理 总第47篇 ▼ (本文框架) 数据加载 导入文本数据 1、导入文本格式数据(CSV)的方法: 方法一:使用pd.read_csv(),默认打开csv文件。 9、
写时复制 将成为 pandas 3.0 的新默认值。这意味着链式索引永远不会起作用。因此,SettingWithCopyWarning将不再必要。有关更多上下文,请参见此部分。我们建议打开写时复制以利用改进
Index对象不需要是唯一的;你可以有重复的行或列标签。这一点可能一开始会有点困惑。如果你熟悉 SQL,你会知道行标签类似于表上的主键,你绝不希望在 SQL 表中有重复项。但 pandas 的一个作用是在数据传输到某个下游系统之前清理混乱的真实世界数据。而真实世界的数据中有重复项,即使在应该是唯一的字段中也是如此。
前几天,为大家分享了一篇文章《又一个Python神器,不写一行代码,就可以调用Matplotlib绘图!》,有位粉丝提到了一个牛逼的库,它巧妙的将Pandas与GUI界面结合起来,使得我们可以借助GUI界面来分析DATaFrame数据框。
pandas.read_csv()函数是Pandas库中用于读取CSV(逗号分隔值)文件的函数之一。
数据规约: 对于中型或小型的数据集而言,通过前面学习的预处理方式已经足以应对,但这些方式并不适合大型数据集。由于大型数据集一般存在数量庞大、属性多且冗余、结构复杂等特点,直接被应用可能会耗费大量的分析或挖掘时间,此时便需要用到数据规约。 数据规约类似数据集的压缩,它的作用主要是从原有数据集中获得一个精简的数据集,这样可以在降低数据规模的基础上,保留了原有数据集的完整特性。在使用精简的数据集进行分析或挖掘时,不仅可以提高工作效率,还可以保证分析或挖掘的结果与使用原有数据集获得的结果基本相同。 要完成数据规约这一过程,可采用多种手段,包括维度规约、数量规约和数据压缩。
在设置操作中返回副本还是引用可能取决于上下文。有时这被称为chained assignment,应该避免。请参阅返回视图与副本。
数据表可以按「键」合并,用 merge 函数;可以按「轴」来连接,用 concat 函数。
NumPy,即 Numerical Python,是 Python 中最重要的数值计算基础包之一。许多提供科学功能的计算包使用 NumPy 的数组对象作为数据交换的标准接口之一。我涵盖的关于 NumPy 的许多知识也适用于 pandas。
人工智能(AI)无处不在。机器学习和人工智能正在彻底改变现代问题的解决方式。应用机器学习的一种很酷的方法是使用财务数据。财务数据是机器学习的一个游乐场。
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的博客 🍊个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 🥭本文内容:Python 数据处理:Pandas库的使用 ---- Python 数据处理:Pandas库的使用 1.Pandas 数据结构 1.1 Series 1.2 DataFrame 2.基本功能 2.1 重新索引 2.2 丢弃指定轴上的项 2.3 索引、选取和过滤 2.4 用 loc 和 iloc 进行选取 2.5
https://github.com/birdskyws/Quantitative-transaction
Pandas中进行区间切分使用的是cut()方法,方法中有个bins参数来指明区间
在使用.loc进行高级索引时,将MultiIndex在语法上整合在一起有点具有挑战性,但我们已经尽力做到了。一般来说,MultiIndex 键采用元组的形式。例如,以下操作会按您的预期工作:
在迅速变化的金融领域中,数据分析和解释的能力至关重要。本文探讨了Python在金融数据分析中的应用,包括使用Pandas、NumPy和Matplotlib等Python库,它们能够处理股票市场数据、展示趋势并构建交易策略。无论你是经验丰富的金融分析师还是初入投资领域者,这些见解和技巧都将增强你的分析技能,拓宽对金融市场动态的理解,并帮助你在股票市场做出明智的决策。
在数据科学和机器学习领域,数据处理和分析是至关重要的一环。Pandas库是Python中最强大、灵活且广泛使用的数据处理库之一。本教程将详细介绍Pandas库的各个方面,从基本的数据结构到高级的数据操作,帮助读者更好地理解和利用这一工具。
https://github.com/pydata/pandas-datareader
丘老师是使用pandas_datareader.DataReader来读取的雅虎提供的阿里巴巴股票数据,现在雅虎已经被弃用。这里我使用Tushare来读取金融数据。 Tushare是一个免费、开源的python财经数据接口包。
Pandas 是在金融建模的背景下开发的,正如你所料,它包含一组相当广泛的工具,用于处理日期,时间和时间索引数据。日期和时间数据有几种,我们将在这里讨论:
在我看来,对于Numpy以及Matplotlib,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础。而Scipy(会在接下来的帖子中提及)当然是另一个主要的也十分出色的科学计算库,但是我认为前三者才是真正的Python科学计算的支柱。
pandas文档:http://pandas.pydata.org/pandas-docs/stable/
pandas 可以利用PyArrow来扩展功能并改善各种 API 的性能。这包括:
早起导读:pandas是Python数据处理的利器,时间序列数据又是在很多场景中出现,本文来自GitHub,详细讲解了Python和Pandas中的时间及时间序列数据的处理方法与实战,建议收藏阅读。
大家好,我是皮皮。其实这个pandas教程,卷的很严重了,才哥,小P等人写了很多的文章,这篇文章是粉丝【古月星辰】投稿,自己学习过程中整理的一些基础资料,整理成文,这里发出来给大家一起学习。
如果你还想知道pandas所依赖的模块的版本,你可以使用show_versions()函数:
在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载、清理、转换以及重塑。这些工作会占到分析师时间的80%或更多。有时,存储在文件和数据库中的数据的格式不适合某个特定的任务。许多研究者都选择使用通用编程语言(如Python、Perl、R或Java)或UNIX文本处理工具(如sed或awk)对数据格式进行专门处理。幸运的是,pandas和内置的Python标准库提供了一组高级的、灵活的、快速的工具,可以让你轻松地将数据规变为想要的格式。 如果你发现了一种本书或pandas库中没有的数据操作方式,请尽管
大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。
一、NumPy简介 NumPy是针对多维数组(Ndarray)的一个科学计算(各种运算)包,封装了多个可以用于数组间计算的函数。 数组是相同数据类型的元素按一定顺序排列的组合,注意必须是相同数据类型的,比如说全是整数、全是字符串等。 array([1,2,3]) # 数值型数组 array(['w','s','q'],dtype = '<U1') # 字符型数组 二、NumPy 数组的生成 要使用 NumPy,要先有符合NumPy数组的数据,不同的包
美国食品与药品管理局(FDA)批准新药、法律裁决、企业合并、股票回购和CEO偶然在播客上露脸,这些都是影响股价的事件的例子。现实生活中发生的重大事件虽然不能被像技术指标一样被量化,但是无疑会对股价产生影响。
可根据⼀个或多个键将不同DataFrame中的⾏连接起来,它实现的就是数据库的join操作 ,就是数据库风格的合并
数据经过采集后通常会被存储到Word、Excel、JSON等文件或数据库中,从而为后期的预处理工作做好数据储备。数据获取是数据预处理的第一步操作,主要是从不同的渠道中读取数据。Pandas支持CSV、TXT、Excel、JSON这几种格式文件、HTML表格的读取操作,另外Python可借助第三方库实现Word与PDF文件的读取操作。本章主要为大家介绍如何从多个渠道中获取数据,为预处理做好数据准备。
探索性数据分析,Exploratory Data Analysis (EDA) ,通常不包括创建模型,但包括总结数据集的特征和可视化。
data={c:[strc(c)+str(i) for i in ind]
Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。
当我们在使用Python进行数值计算时,有时会遇到类似于ValueError: cannot convert float NaN to integer的错误。这个错误通常是由于我们试图将一个NaN(Not a Number)转换为整数类型引起的。在本篇文章中,我们将讨论这个错误的原因以及如何解决它。
领取专属 10元无门槛券
手把手带您无忧上云