首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据导入与预处理-第6章-03数据规约

    数据规约: 对于中型或小型的数据集而言,通过前面学习的预处理方式已经足以应对,但这些方式并不适合大型数据集。由于大型数据集一般存在数量庞大、属性多且冗余、结构复杂等特点,直接被应用可能会耗费大量的分析或挖掘时间,此时便需要用到数据规约。 数据规约类似数据集的压缩,它的作用主要是从原有数据集中获得一个精简的数据集,这样可以在降低数据规模的基础上,保留了原有数据集的完整特性。在使用精简的数据集进行分析或挖掘时,不仅可以提高工作效率,还可以保证分析或挖掘的结果与使用原有数据集获得的结果基本相同。 要完成数据规约这一过程,可采用多种手段,包括维度规约、数量规约和数据压缩。

    02

    《利用Python进行数据分析·第2版》第7章 数据清洗和准备7.1 处理缺失数据7.2 数据转换7.3 字符串操作7.4 总结

    在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载、清理、转换以及重塑。这些工作会占到分析师时间的80%或更多。有时,存储在文件和数据库中的数据的格式不适合某个特定的任务。许多研究者都选择使用通用编程语言(如Python、Perl、R或Java)或UNIX文本处理工具(如sed或awk)对数据格式进行专门处理。幸运的是,pandas和内置的Python标准库提供了一组高级的、灵活的、快速的工具,可以让你轻松地将数据规变为想要的格式。 如果你发现了一种本书或pandas库中没有的数据操作方式,请尽管

    09
    领券