发布

机器学习实战

分享机器学习实战和部分理论知识
专栏成员
35
文章
4312
阅读量
13
订阅数
深入解析EfficientNet:高效深度学习网络与ResNet的对比(使用keras进行代码复现,并使用cifar10数据集进行实战)
在深度学习领域,卷积神经网络(CNN)是解决图像分类、目标检测等问题的关键技术之一。近年来,随着深度学习的不断发展,新的网络架构不断涌现。在众多网络架构中,EfficientNet和ResNet都成为了深度学习模型的佼佼者,分别在高效性和深度特性上得到了广泛应用。本文将详细介绍EfficientNet,并与经典的ResNet进行对比,分析它的架构、使用场景、适用问题及实例。
机器学习司猫白
2025-03-05
1130
【深入OpenCV图像处理:从基础到实战应用】
在医疗影像分析、工业质检、自动驾驶等领域,OpenCV作为计算机视觉的基石工具,为图像处理提供强大支持。本文将通过代码级细节剖析和工业级实践案例,系统讲解OpenCV核心功能,并深入解读参数配置原理。
机器学习司猫白
2025-03-05
980
【图像处理与OpenCV:技术栈、应用和实现】
图像处理作为计算机视觉领域的重要分支,在各个行业中扮演着越来越重要的角色。从医疗诊断、自动驾驶、安防监控到人工智能领域的图像识别,图像处理无处不在。随着计算机硬件性能的提升和深度学习的快速发展,图像处理技术也在不断演进,尤其是OpenCV(Open Source Computer Vision Library)成为了开发者们在图像处理领域的首选工具之一。本文将详细介绍OpenCV的基本功能、常见应用及技术实现,帮助读者深入理解图像处理的核心技术。
机器学习司猫白
2025-03-04
820
【Keras图像处理入门:图像加载与预处理全解析】
使用flow_from_directory方法,可以通过指定目录中的子目录来加载图像数据。每个子目录代表一个类别,子目录中的文件(图像)会自动被分配到该类别。这种方式适用于具有结构化文件夹格式的数据集,其中每个类别都存放在不同的文件夹中。
机器学习司猫白
2025-02-28
1160
Python图像处理入门:如何打开图像文件及常见格式
神经网络中的图像处理是一个非常重要的环节,尤其是在计算机视觉领域。作为一名新手,你可能会遇到一个常见的挑战——如何在 Python 中打开并理解图像文件。在本篇文章中,我们将介绍几种常见的图像文件格式,并讲解如何使用 Python 打开这些图像文件进行处理。
机器学习司猫白
2025-02-26
560
XGBoost vs LightGBM vs CatBoost:三大梯度提升框架深度解析
机器学习司猫白
2025-02-22
1740
【机器学习实战】kaggle背包价格预测(堆叠的实战用法)
该竞赛的数据集是学生背包价格预测数据集中训练的深度学习模型生成的。特征分布与原始分布接近但不完全相同。请随意将原始数据集用作本竞赛的一部分,既要探索差异,又要查看将原始内容纳入训练是否可以改善模型性能。
机器学习司猫白
2025-02-15
750
探索DeepSeek:开源大模型领域的中国力量
在人工智能技术迅猛发展的今天,大语言模型(LLM)已成为全球科技竞争的焦点。来自中国的深度求索(DeepSeek)团队凭借其开源模型系列,正在为这一领域注入新的活力。本文将带您了解DeepSeek的技术突破、开源生态价值及其对AI民主化的深远影响。
机器学习司猫白
2025-02-14
1490
【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(Residual Networks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。
机器学习司猫白
2025-02-13
1990
【深度学习入门实战】基于Keras的手写数字识别实战(附完整可视化分析)
本案例使用经典的MNIST手写数字数据集,通过Keras构建全连接神经网络,实现0-9数字的分类识别。文章将包含:
机器学习司猫白
2025-02-12
1470
从零开始的AI对话指南:5步掌握提示词工程精髓
提示词工程(Prompt Engineering)作为人机对话的核心技能,已成为数字时代的新型生产力工具。本文将带你系统掌握这项价值百万的对话技术。
机器学习司猫白
2025-02-11
2140
标签编码和独热编码对线性模型和树模型的影响
概述 相信大家在建模中经常会用到标签编码和独热编码,这两种不同的编码方式到底会对模型产生什么影响,本期就使用kaggle贴纸销量预测的数据集针对这两种编码方式展开研究。让我们开始探索吧。
机器学习司猫白
2025-01-23
890
【数据挖掘实战】 房价预测
本次竞赛有 79 个解释变量(几乎)描述了爱荷华州艾姆斯住宅的各个方面,需要预测每套住宅的最终价格。
机器学习司猫白
2025-01-21
860
【机器学习实战】kaggle 欺诈检测---使用生成对抗网络(GAN)解决欺诈数据中正负样本极度不平衡问题
https://blog.csdn.net/2302_79308082/article/details/145177242 本篇文章是基于上次文章中提到的对抗生成网络,通过对抗生成网络生成少数类样本,平衡欺诈数据中正类样本极少的问题。
机器学习司猫白
2025-01-21
1490
【机器学习实战】kaggle 欺诈检测---如何解决欺诈数据中正负样本极度不平衡问题
使用机器学习模型识别欺诈性信用卡交易,这样可以确保客户不会为未曾购买的商品承担费用。
机器学习司猫白
2025-01-21
1040
【深度学习实战】kaggle 自动驾驶的假场景分类
文件 train.csv - 训练集标签 Sample_submission.csv - 正确格式的示例提交文件 Train/- 训练图像 Test/ - 测试图像
机器学习司猫白
2025-01-21
860
【理解机器学习中的过拟合与欠拟合】
在机器学习中,模型的表现很大程度上取决于我们如何平衡“过拟合”和“欠拟合”。本文通过理论介绍和代码演示,详细解析过拟合与欠拟合现象,并提出应对策略。主要内容如下:
机器学习司猫白
2025-01-21
1740
【PyTorch入门】使用PyTorch构建一个简单的图像分类模型
机器学习司猫白
2025-01-21
1490
最全总结【时间序列】时间序列的预处理和特征工程
时间序列(Time Series)是按时间顺序排列的一组数据点,通常用于描述和分析随时间变化的现象。时间序列数据在许多领域中都有广泛应用,如金融市场、气象学、经济学、医学等。
机器学习司猫白
2025-01-21
2930
【PyTorch入门】 PyTorch不同优化器的比较
在 PyTorch 中,torch.optim 提供了多种优化器用于神经网络训练。每种优化器背后有不同的更新规则和机制,旨在适应不同的训练需求。以下是五种常见优化器(SGD、Momentum、AdaGrad、RMSprop、Adam)的原理、作用、优缺点及应用场景。
机器学习司猫白
2025-01-21
1650
点击加载更多
社区活动
Python精品学习库
代码在线跑,知识轻松学
博客搬家 | 分享价值百万资源包
自行/邀约他人一键搬运博客,速成社区影响力并领取好礼
技术创作特训营·精选知识专栏
往期视频·干货材料·成员作品 最新动态
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档