首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >如何将JSON (从python请求)转换为pandas数据帧

如何将JSON (从python请求)转换为pandas数据帧
EN

Stack Overflow用户
提问于 2020-11-06 03:21:53
回答 3查看 559关注 0票数 0

我有以下代码:

代码语言:javascript
运行
复制
import requests
import json

url = "https://apidojo-yahoo-finance-v1.p.rapidapi.com/stock/v2/get-chart"

querystring = {"interval":"5m","symbol":"AMRN","range":"1d","region":"US"}

headers = {
    'x-rapidapi-key': "xx",
    'x-rapidapi-host': "apidojo-yahoo-finance-v1.p.rapidapi.com"
    }

response = requests.request("GET", url, headers=headers, params=querystring)

Tihs返回一个复杂的JSON: shared here。

https://codepen.io/luis-valencia/pen/pobZqVJ

现在我需要将它转换为pandas数据帧,但我不知道如何转换,特别是因为在pandas数据帧中我只需要“

{时间戳,打开,关闭,高,低,音量}

但是在API调用的json中,时间戳和值在两个不同的元素中返回

EN

回答 3

Stack Overflow用户

回答已采纳

发布于 2020-11-06 03:54:35

我深入研究了你的json对象。这是我能得到的最好的结果:

以j为您的json作为字典:

代码语言:javascript
运行
复制
import pandas as pd
import json

j=json.loads(response.json())

data=[j['chart']['result'][0]['timestamp']]+ list(j['chart']['result'][0]['indicators']['quote'][0].values())

df=pd.DataFrame({'timestamp':data[0], 'close':data[1], 'open':data[2], 'high':data[3], 'low':data[4], 'volume':data[5]})

>>> print(df)

     timestamp   close   open   high    low   volume
0   1604578500  5.1200  5.120  5.120  5.120      0.0
1   1604580900  5.0600  5.060  5.060  5.060      0.0
2   1604581200  5.0500  5.060  5.060  5.050      0.0
3   1604581800  5.1000  5.100  5.100  5.100      0.0
4   1604582100  5.0200  5.120  5.120  5.000      0.0
..         ...     ...    ...    ...    ...      ...
71  1604602200  4.7100  4.655  4.710  4.655  38036.0
72  1604602500  4.6999  4.705  4.710  4.685  31368.0
73  1604602800  4.6950  4.700  4.700  4.690  24811.0
74  1604603100     NaN    NaN    NaN    NaN      NaN
75  1604603119  4.6950  4.695  4.695  4.695      0.0

[76 rows x 6 columns]
票数 2
EN

Stack Overflow用户

发布于 2020-11-06 04:29:19

这里有一种方法。我使用pprint()来理解响应的格式。

代码语言:javascript
运行
复制
import pandas as pd

# from Code Pen (manually converted null -> None)
/*
* 提示:该行代码过长,系统自动注释不进行高亮。一键复制会移除系统注释 
* result = {"chart":{"result":[{"meta":{"currency":"USD","symbol":"AMRN","exchangeName":"NMS","instrumentType":"EQUITY","firstTradeDate":733674600,"regularMarketTime":1604603119,"gmtoffset":-18000,"timezone":"EST","exchangeTimezoneName":"America/New_York","regularMarketPrice":4.695,"chartPreviousClose":4.99,"previousClose":4.99,"scale":3,"priceHint":4,"currentTradingPeriod":{"pre":{"timezone":"EST","start":1604566800,"end":1604586600,"gmtoffset":-18000},"regular":{"timezone":"EST","start":1604586600,"end":1604610000,"gmtoffset":-18000},"post":{"timezone":"EST","start":1604610000,"end":1604624400,"gmtoffset":-18000}},"tradingPeriods":{"pre":[[{"timezone":"EST","start":1604566800,"end":1604586600,"gmtoffset":-18000}]],"post":[[{"timezone":"EST","start":1604610000,"end":1604624400,"gmtoffset":-18000}]],"regular":[[{"timezone":"EST","start":1604586600,"end":1604610000,"gmtoffset":-18000}]]},"dataGranularity":"5m","range":"1d","validRanges":["1d","5d","1mo","3mo","6mo","1y","2y","5y","10y","ytd","max"]},"timestamp":[1604578500,1604580900,1604581200,1604581800,1604582100,1604582400,1604582700,1604583000,1604583300,1604583600,1604583900,1604584200,1604584500,1604584800,1604585100,1604585400,1604585700,1604586000,1604586300,1604586600,1604586900,1604587200,1604587500,1604587800,1604588100,1604588400,1604588700,1604589000,1604589300,1604589600,1604589900,1604590200,1604590500,1604590800,1604591100,1604591400,1604591700,1604592000,1604592300,1604592600,1604592900,1604593200,1604593500,1604593800,1604594100,1604594400,1604594700,1604595000,1604595300,1604595600,1604595900,1604596200,1604596500,1604596800,1604597100,1604597400,1604597700,1604598000,1604598300,1604598600,1604598900,1604599200,1604599500,1604599800,1604600100,1604600400,1604600700,1604601000,1604601300,1604601600,1604601900,1604602200,1604602500,1604602800,1604603100,1604603119],"indicators":{"quote":[{"close":[5.12,5.06,5.05,5.1,5.02,4.99,4.8,4.7801,4.7999,4.8,4.8,4.8,4.79,4.82,4.81,4.82,4.86,4.86,4.95,4.6595001220703125,4.688799858093262,4.659999847412109,4.809999942779541,4.75,4.71999979019165,4.6819000244140625,4.651899814605713,4.658400058746338,4.652299880981445,4.650000095367432,4.679999828338623,4.740099906921387,4.760000228881836,4.724999904632568,4.71999979019165,4.755000114440918,4.769999980926514,4.755000114440918,4.735000133514404,4.74399995803833,4.755000114440918,4.735000133514404,4.735000133514404,4.710000038146973,4.71999979019165,4.724999904632568,4.718100070953369,4.730000019073486,4.704999923706055,4.699399948120117,4.690000057220459,4.679999828338623,4.679999828338623,4.679999828338623,4.670000076293945,4.652500152587891,4.659999847412109,4.664999961853027,4.675000190734863,4.675000190734863,4.679999828338623,4.659999847412109,4.644999980926514,4.659999847412109,4.650000095367432,4.65500020980835,4.65500020980835,4.644999980926514,4.639900207519531,4.650000095367432,4.65500020980835,4.710000038146973,4.699900150299072,4.695000171661377,None,4.695000171661377],"open":[5.12,5.06,5.06,5.1,5.12,5.0,4.9,4.7901,4.8,4.8,4.7999,4.8,4.79,4.82,4.81,4.82,4.82,4.86,4.87,4.840000152587891,4.659999847412109,4.6875,4.670000076293945,4.798099994659424,4.75,4.723800182342529,4.683899879455566,4.65500020980835,4.65500020980835,4.659999847412109,4.65500020980835,4.680099964141846,4.739999771118164,4.755000114440918,4.71999979019165,4.730000019073486,4.755000114440918,4.760000228881836,4.755000114440918,4.735000133514404,4.741600036621094,4.760000228881836,4.735000133514404,4.735000133514404,4.708099842071533,4.718100070953369,4.71999979019165,4.715000152587891,4.730000019073486,4.699999809265137,4.699999809265137,4.690000057220459,4.679999828338623,4.683800220489502,4.679999828338623,4.670100212097168,4.659900188446045,4.659999847412109,4.66480016708374,4.675000190734863,4.670000076293945,4.684999942779541,4.659999847412109,4.644999980926514,4.668700218200684,4.658899784088135,4.659999847412109,4.65500020980835,4.64109992980957,4.635000228881836,4.65500020980835,4.65500020980835,4.704999923706055,4.699999809265137,None,4.695000171661377],"high":[5.12,5.06,5.06,5.1,5.12,5.04,4.9,4.8,4.8,4.8,4.8,4.8,4.8001,4.82,4.81,4.83,4.86,4.86,4.95,4.889999866485596,4.724800109863281,4.690000057220459,4.815000057220459,4.809999942779541,4.789999961853027,4.730000019073486,4.6880998611450195,4.664999961853027,4.659999847412109,4.659999847412109,4.684999942779541,4.764999866485596,4.789999961853027,4.7581000328063965,4.739999771118164,4.760000228881836,4.769999980926514,4.764999866485596,4.760000228881836,4.75,4.760000228881836,4.768899917602539,4.75,4.735000133514404,4.71999979019165,4.739999771118164,4.724999904632568,4.730000019073486,4.735000133514404,4.704999923706055,4.699999809265137,4.695000171661377,4.690000057220459,4.690000057220459,4.687300205230713,4.679999828338623,4.670000076293945,4.675000190734863,4.679500102996826,4.678100109100342,4.690000057220459,4.690000057220459,4.670000076293945,4.670000076293945,4.669899940490723,4.659999847412109,4.659999847412109,4.659999847412109,4.650000095367432,4.659999847412109,4.664999961853027,4.710000038146973,4.710000038146973,4.699999809265137,None,4.695000171661377],"low":[5.12,5.06,5.05,5.1,5.0,4.99,4.77,4.7801,4.7999,4.7901,4.7999,4.79,4.79,4.82,4.81,4.82,4.82,4.85,4.86,4.619999885559082,4.630000114440918,4.593999862670898,4.670000076293945,4.744999885559082,4.71999979019165,4.65500020980835,4.639999866485596,4.639999866485596,4.639999866485596,4.650000095367432,4.614999771118164,4.680099964141846,4.730000019073486,4.71999979019165,4.71999979019165,4.704999923706055,4.75,4.730000019073486,4.730000019073486,4.7245001792907715,4.724999904632568,4.731100082397461,4.71999979019165,4.699999809265137,4.679999828338623,4.715000152587891,4.701099872589111,4.699999809265137,4.699999809265137,4.679999828338623,4.679999828338623,4.670000076293945,4.670000076293945,4.650000095367432,4.664999961853027,4.650000095367432,4.650000095367432,4.65500020980835,4.659999847412109,4.664999961853027,4.670000076293945,4.65500020980835,4.644999980926514,4.644999980926514,4.650000095367432,4.650000095367432,4.650000095367432,4.639999866485596,4.630000114440918,4.635000228881836,4.650000095367432,4.65500020980835,4.684999942779541,4.690000057220459,None,4.695000171661377],"volume":[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,727514,383730,518259,375858,146610,136773,201506,187065,135156,109423,68829,269577,143004,176817,92720,73991,110323,80055,156048,59170,44408,56697,97600,74426,61372,120491,51939,58761,55472,60604,49009,104735,82872,61292,148882,95217,85067,64669,78016,63939,43058,37312,148380,123094,75770,32656,70807,43425,95237,72800,79580,61712,38036,31368,24811,None,0]}]}}],"error":None}}
*/

d = result['chart']['result'][0]['indicators']['quote'][0]
closes  = d['close']
opens   = d['open']
lows    = d['low']
highs   = d['high']
volumes = d['volume']
timestamps = result['chart']['result'][0]['timestamp']

df = pd.DataFrame({'timestamp': timestamps, 
                   'open': opens, 
                   'close': closes, 
                   'high': highs, 
                   'low': lows, 
                   'volume': volumes,})
print(df.shape)
print(df.head(10))

(76, 6)
    timestamp    open   close  high     low  volume
0  1604578500  5.1200  5.1200  5.12  5.1200     0.0
1  1604580900  5.0600  5.0600  5.06  5.0600     0.0
2  1604581200  5.0600  5.0500  5.06  5.0500     0.0
3  1604581800  5.1000  5.1000  5.10  5.1000     0.0
4  1604582100  5.1200  5.0200  5.12  5.0000     0.0
5  1604582400  5.0000  4.9900  5.04  4.9900     0.0
6  1604582700  4.9000  4.8000  4.90  4.7700     0.0
7  1604583000  4.7901  4.7801  4.80  4.7801     0.0
8  1604583300  4.8000  4.7999  4.80  4.7999     0.0
9  1604583600  4.8000  4.8000  4.80  4.7901     0.0
票数 0
EN

Stack Overflow用户

发布于 2020-11-06 03:36:44

首先将json转换为dict,然后将dict转换为DataFrame:

代码语言:javascript
运行
复制
json = response.json()
df = pd.DataFrame.from_dict(json)

如果您的json不包含每个字典键的列表,那么您可能希望尝试通过索引来定向dataframe:

代码语言:javascript
运行
复制
df = pd.DataFrame.from_dict(json, orient='index')

对于您的特定json使用:

代码语言:javascript
运行
复制
df = pd.DataFrame.from_dict(json['chart']['result'][0]['indicators']['quote'][0])

并稍后添加tymestamp

票数 -1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/64703991

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档