首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >keras -为什么我的输出是nan?

keras -为什么我的输出是nan?
EN

Stack Overflow用户
提问于 2016-07-13 16:30:43
回答 0查看 3.4K关注 0票数 1

关于任务:我将类距离作为输入,并希望获得类置信度(介于0.0和1.0之间的数字)。所以我有一些类似的东西:

代码语言:javascript
运行
复制
[
  [
    0.0,
    0.0,
    0.0,
    6.371921190238224,
    0.0,
    3.3287083713830516,
    7.085957828217146,
    7.747408965761948,
    5.498717498872398,
    5.498717498872398,
    5.498717498872398,
    5.498717498872398,
    8.529725281060978
  ],
  [
    6.396501448825533,
    0.0,
    0.0,
    5.217483270813266,
    0.0,
    5.319046151560534,
    5.823161030197735,
    3.8991256371824976,
    6.269856323952211,
    5.517874167220461,
    6.396501448825533,
    5.328678274963717,
    3.8991256371824976
  ],
]

结果是

代码语言:javascript
运行
复制
[
  [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
  [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
  ...
]

我有大约200个例子。下面是我的网络构建代码:

代码语言:javascript
运行
复制
def train(self, distances, classes):
    """
    Train network
    :param distances: array of distances to classes
    :type distances: list[list[float]]
    :param classes: array of class indicators
    :type classes: list[list[float]]
    """
    example_count, class_count = self._dimensions(distances, classes)
    self.model = Sequential()
    self.model.add(Dense(128, input_dim=class_count))
    self.model.add(Dense(class_count))
    self.model.compile(optimizer=SGD(), loss='mse')
    self.model.fit(array(distances), array(classes))

但是在训练期间,我得到了下一个输出:

代码语言:javascript
运行
复制
Epoch 1/10
425/425 [==============================] - 0s - loss: nan     
Epoch 2/10
425/425 [==============================] - 0s - loss: nan     
Epoch 3/10
425/425 [==============================] - 0s - loss: nan     
Epoch 4/10
425/425 [==============================] - 0s - loss: nan     
Epoch 5/10
425/425 [==============================] - 0s - loss: nan     
Epoch 6/10
425/425 [==============================] - 0s - loss: nan     
Epoch 7/10
425/425 [==============================] - 0s - loss: nan     
Epoch 8/10
425/425 [==============================] - 0s - loss: nan     
Epoch 9/10
425/425 [==============================] - 0s - loss: nan     
Epoch 10/10
425/425 [==============================] - 0s - loss: nan    

当我尝试使用model.predict(numpy.array([[ 0.0, 0.0, 0.0, 6.371921190238224, 0.0, 3.3287083713830516, 7.085957828217146, 7.747408965761948, 5.498717498872398, 5.498717498872398, 5.498717498872398, 5.498717498872398, 8.529725281060978]])) (来自训练集的示例)时,我得到了[[ nan nan nan nan nan nan nan nan nan nan nan nan nan]]

数据或构建代码中会出现什么错误?

EN

回答

页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/38346448

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档