系统信息
操作系统平台和发行版(例如Linux Ubuntu 16.04):Ubuntu 18.04
安装自(源或二进制)的射线:二进制
射线版本: 0.7.3
Python版本: 3.7
Tensorflow版本: tensorflow-gpu 2.0.0rc0
精确的复制命令:
# Importing packages
from time import time
import gym
import tensorflow as tf
import ray
# Creating our initial model
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, input_shape=(24,), activation='relu'),
tf.keras.layers.Dense(4, activation='softmax')
])
# Setting parameters
episodes = 64
env_name = 'BipedalWalker-v2'
# Initializing ray
ray.init(num_cpus=8, num_gpus=1)
# Creating our ray function
@ray.remote
def play(weights):
actor = tf.keras.Sequential([
tf.keras.layers.Dense(64, input_shape=(24,), activation='relu'),
tf.keras.layers.Dense(4, activation='softmax')
])
actor = actor.set_weights(weights)
env = gym.make('BipedalWalker-v2').env
env._max_episode_steps=1e20
obs = env.reset()
for _ in range(1200):
action = actor.predict_classes(obs).flatten()[0]
action = env.action_space.sample()
obs, rt, done, info = env.step(action)
return rt
# Testing ray
start = time()
weights = model.get_weights()
weights = ray.put(weights)
results = ray.get([play.remote(weights) for i in range(episodes)])
ray.shutdown()
print('Ray done after:',time()-start)描述问题
我正试图使用Tensorflow 2.0GPUKeras演员来并行化OpenAI健身房环境的推出。每次我尝试使用@ray.remote实例化Keras模型时,都会引发递归深度达到的错误。我遵循Ray概述的文档,其中建议传递权重而不是模型。我不知道我做错了什么,有什么想法吗?
源代码/日志
文件"/home/jacob/anaconda3/envs/tf-2.0-gpu/lib/python3.7/site-packages/tensorflow/init.py",第50行,在getattr模块= self._load()中
文件"/home/jacob/anaconda3/envs/tf-2.0-gpu/lib/python3.7/site-packages/tensorflow/init.py",第44行,在_load模块= _importlib.import_module(self.name)中
RecursionError:超过最大递归深度
发布于 2019-09-03 21:32:36
请参阅GitHub对此问题的响应:https://github.com/ray-project/ray/issues/5614
需要做的就是在函数定义中导入tensorflow:
@ray.remote
def play(weights):
import tensorflow as tf
actor = tf.keras.Sequential([
tf.keras.layers.Dense(64, input_shape=(24,), activation='relu'),
tf.keras.layers.Dense(4, activation='softmax')
])
actor.set_weights(weights)
env = gym.make('BipedalWalker-v2').env
env._max_episode_steps=1e20
obs = env.reset()
for _ in range(1200):
action = actor.predict_classes(np.array([obs])).flatten()[0]
action = env.action_space.sample()
obs, rt, done, info = env.step(action)
return rt发布于 2019-09-02 17:51:34
核心问题似乎是Cloud泡菜( Ray用来序列化远程函数并将它们发送给工作进程)无法对tf.keras.Sequential类进行分类。例如,我可以如下所示:
import cloudpickle # cloudpickle.__version__ == '1.2.1'
import tensorflow as tf # tf.__version__ == '2.0.0-rc0'
def f():
tf.keras.Sequential
cloudpickle.loads(cloudpickle.dumps(f)) # This fails.最后一行失败
---------------------------------------------------------------------------
RecursionError Traceback (most recent call last)
<ipython-input-23-25cc307e6227> in <module>
----> 1 cloudpickle.loads(cloudpickle.dumps(f))
~/anaconda3/lib/python3.6/site-packages/tensorflow/__init__.py in __getattr__(self, item)
48
49 def __getattr__(self, item):
---> 50 module = self._load()
51 return getattr(module, item)
52
~/anaconda3/lib/python3.6/site-packages/tensorflow/__init__.py in _load(self)
42 def _load(self):
43 """Import the target module and insert it into the parent's namespace."""
---> 44 module = _importlib.import_module(self.__name__)
45 self._parent_module_globals[self._local_name] = module
46 self.__dict__.update(module.__dict__)
... last 2 frames repeated, from the frame below ...
~/anaconda3/lib/python3.6/site-packages/tensorflow/__init__.py in __getattr__(self, item)
48
49 def __getattr__(self, item):
---> 50 module = self._load()
51 return getattr(module, item)
52
RecursionError: maximum recursion depth exceeded while calling a Python object有趣的是,这个继承了和tensorflow==1.14.0,但是我想keras在2.0中已经改变了很多。
解决办法
作为的解决方案,您可以尝试在一个单独的模块或文件中定义f,如
# helper_file.py
import tensorflow as tf
def f():
tf.keras.Sequential然后在您的主脚本中使用它,如下所示。
import helper_file
import ray
ray.init(num_cpus=1)
@ray.remote
def use_f():
helper_file.f()
ray.get(use_f.remote())这里的不同之处在于,当Cloud泡菜试图序列化use_f时,它实际上不会查看helper_file的内容。当某些辅助进程试图反序列化use_f时,该辅助进程将导入helper_file。这种额外的间接作用似乎会使云泡菜更可靠地工作。这与使用tensorflow或任何库对函数进行筛选时发生的情况相同。Cloudpickle不序列化整个库,它只是告诉反序列化过程导入相关的库。
注释:要在多台机器上工作,helper_file.py必须存在并位于每台机器上的helper_file.py路径上(实现这一目的的一种方法是将它作为一个模块安装在每台机器上)。
我验证了这似乎解决了您的例子中的问题。做了那个修复后,我遇到了
File "<ipython-input-4-bb51dc74442c>", line 3, in play
File "/Users/rkn/Workspace/ray/helper_file.py", line 15, in play
action = actor.predict_classes(obs).flatten()[0]
AttributeError: 'NoneType' object has no attribute 'predict_classes'但这似乎是另一个问题。
https://stackoverflow.com/questions/57750920
复制相似问题