首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >问答首页 >与潘达斯的二维联调

与潘达斯的二维联调
EN

Stack Overflow用户
提问于 2017-04-14 22:26:49
回答 1查看 4.7K关注 0票数 5

因此,我有两组特性,我希望对它们进行存储(分类),然后组合起来创建一个新特性。这与将坐标划分为地图上的网格没有什么不同。

问题是,这些特性的分布并不均匀,我想在这两个特性/坐标上绑定(比如pandas.qcut())时使用分位数。

有比在这两个特性上执行qcut()然后连接结果标签更好的方法吗?

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2017-04-14 22:39:33

创建一个笛卡尔积分类.

考虑一下dataframe df

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
df = pd.DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20)))

           A         B
0   0.538186  0.038985
1   0.185523  0.438329
2   0.652151  0.067359
3   0.746060  0.774688
4   0.373741  0.009526
5   0.603536  0.149733
6   0.775801  0.585309
7   0.091238  0.811828
8   0.504035  0.639003
9   0.671320  0.132974
10  0.619939  0.883372
11  0.301644  0.882258
12  0.956463  0.391942
13  0.702457  0.099619
14  0.367810  0.071612
15  0.454935  0.651631
16  0.882029  0.015642
17  0.880251  0.348386
18  0.496250  0.606346
19  0.805688  0.401578

我们可以用pd.qcut创建新的分类

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
d1 = df.assign(
    A_cut=pd.qcut(df.A, 2, labels=[1, 2]),
    B_cut=pd.qcut(df.B, 2, labels=list('ab'))
)

           A         B A_cut B_cut
0   0.538186  0.038985     1     a
1   0.185523  0.438329     1     b
2   0.652151  0.067359     2     a
3   0.746060  0.774688     2     b
4   0.373741  0.009526     1     a
5   0.603536  0.149733     1     a
6   0.775801  0.585309     2     b
7   0.091238  0.811828     1     b
8   0.504035  0.639003     1     b
9   0.671320  0.132974     2     a
10  0.619939  0.883372     2     b
11  0.301644  0.882258     1     b
12  0.956463  0.391942     2     a
13  0.702457  0.099619     2     a
14  0.367810  0.071612     1     a
15  0.454935  0.651631     1     b
16  0.882029  0.015642     2     a
17  0.880251  0.348386     2     a
18  0.496250  0.606346     1     b
19  0.805688  0.401578     2     b

您可以用元组创建笛卡儿积范畴。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
d2 = d1.assign(cartesian=pd.Categorical(d1.filter(regex='_cut').apply(tuple, 1)))
print(d2)

           A         B A_cut B_cut cartesian
0   0.538186  0.038985     1     a    (1, a)
1   0.185523  0.438329     1     b    (1, b)
2   0.652151  0.067359     2     a    (2, a)
3   0.746060  0.774688     2     b    (2, b)
4   0.373741  0.009526     1     a    (1, a)
5   0.603536  0.149733     1     a    (1, a)
6   0.775801  0.585309     2     b    (2, b)
7   0.091238  0.811828     1     b    (1, b)
8   0.504035  0.639003     1     b    (1, b)
9   0.671320  0.132974     2     a    (2, a)
10  0.619939  0.883372     2     b    (2, b)
11  0.301644  0.882258     1     b    (1, b)
12  0.956463  0.391942     2     a    (2, a)
13  0.702457  0.099619     2     a    (2, a)
14  0.367810  0.071612     1     a    (1, a)
15  0.454935  0.651631     1     b    (1, b)
16  0.882029  0.015642     2     a    (2, a)
17  0.880251  0.348386     2     a    (2, a)
18  0.496250  0.606346     1     b    (1, b)
19  0.805688  0.401578     2     b    (2, b)

如果你这么想的话,你甚至可以为他们宣布订货。

票数 10
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/43422961

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文