我已经在.Net核心中编写了一个Cloud,它从GCS位置读取文件,然后被认为是去denormalize (即为每一行添加更多信息以包含文本描述),然后将其写入BigQuery表。我有两个选择:
如果性能(速度)和成本(金钱)是我的目标,那么在这个场景中写BigQuery的最好方法是什么。这些文件在去甲基化前每个大约有10 are。每一行大约有1000个字符。去甲基化后,大约是原来的三倍。在成功加载到BigQuery中之后,我不需要保留非规范化文件。我关心的是性能,以及关于插入/写入的任何特定的BigQuery每日配额。我不认为有任何,除非您正在做DML语句,但纠正我,如果我错了。
发布于 2020-01-31 12:05:38
我会使用云函数,当您将文件上传到桶中时会触发这些函数。
它是如此普遍,谷歌有一个存储库,这是一个教程,专门为JSON文件使用云函数将云存储数据流到BigQuery中。
然后,我将从以下位置修改示例main.py文件:
def streaming(data, context):
'''This function is executed whenever a file is added to Cloud Storage'''
bucket_name = data['bucket']
file_name = data['name']
db_ref = DB.document(u'streaming_files/%s' % file_name)
if _was_already_ingested(db_ref):
_handle_duplication(db_ref)
else:
try:
_insert_into_bigquery(bucket_name, file_name)
_handle_success(db_ref)
except Exception:
_handle_error(db_ref)对于这个接受CSV文件的
import json
import csv
import logging
import os
import traceback
from datetime import datetime
from google.api_core import retry
from google.cloud import bigquery
from google.cloud import storage
import pytz
PROJECT_ID = os.getenv('GCP_PROJECT')
BQ_DATASET = 'fromCloudFunction'
BQ_TABLE = 'mytable'
CS = storage.Client()
BQ = bigquery.Client()
def streaming(data, context):
'''This function is executed whenever a file is added to Cloud Storage'''
bucket_name = data['bucket']
file_name = data['name']
newRows = postProcessing(bucket_name, file_name)
# It is recommended that you save
# what you process for debugging reasons.
destination_bucket = 'post-processed' # gs://post-processed/
destination_name = file_name
# saveRowsToBucket(newRows,destination_bucket,destination_name)
rowsInsertIntoBigquery(newRows)
class BigQueryError(Exception):
'''Exception raised whenever a BigQuery error happened'''
def __init__(self, errors):
super().__init__(self._format(errors))
self.errors = errors
def _format(self, errors):
err = []
for error in errors:
err.extend(error['errors'])
return json.dumps(err)
def postProcessing(bucket_name, file_name):
blob = CS.get_bucket(bucket_name).blob(file_name)
my_str = blob.download_as_string().decode('utf-8')
csv_reader = csv.DictReader(my_str.split('\n'))
newRows = []
for row in csv_reader:
modified_row = row # Add your logic
newRows.append(modified_row)
return newRows
def rowsInsertIntoBigquery(rows):
table = BQ.dataset(BQ_DATASET).table(BQ_TABLE)
errors = BQ.insert_rows_json(table,rows)
if errors != []:
raise BigQueryError(errors)如果需要的话,仍然需要定义映射(行->newRow)和函数saveRowsToBucket。
https://stackoverflow.com/questions/59637058
复制相似问题