我试图创建一个CNN + LSTM网络,但LSTM层不接受输入形状。有什么我能做的吗?
model = Sequential()
model.add(Conv2D(128, (2,2), padding = 'same', input_shape=(30, 216, 1)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(256, (2,2), padding = 'same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
model.add(LSTM(512, input_shape = (7, 54, 256,)))
model.add(Flatten())
model.add(Dense(7, activation='softmax'))ValueError: lstm_21层的输入0与该层不兼容:预期的ndim=3,found ndim=4。收到的完整形状: None,7,54,256
发布于 2020-05-14 23:29:44
Keras中的LSTM层期望这种格式作为输入:
inputs: A 3D tensor with shape [batch, timesteps, feature].因此,您不能直接通过非递归层。首先,在此之前对该层进行Flatten(),并将该层包装为一个TimeDistributed层,如下所示:
model.add(TimeDistributed(Flatten()))
model.add(LSTM(8))这个TimeDistributed层允许将一个层应用到输入的每个时间片。下面是一个充分发挥作用的示例:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, LSTM, \
Dense, Flatten, Dropout, MaxPooling2D, Activation, TimeDistributed
import numpy as np
X = np.random.rand(100, 30, 216, 1)
y = np.random.randint(0, 7, 100)
model = Sequential()
model.add(Conv2D(16, (2,2), padding = 'same', input_shape=(30, 216, 1)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(32, (2,2), padding = 'same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(8))
model.add(Dense(7, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
history = model.fit(X, y)https://stackoverflow.com/questions/61808828
复制相似问题