首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【C++】封装红黑树实现map和set

【C++】封装红黑树实现map和set

作者头像
ZLRRLZ
发布2025-08-04 08:08:38
发布2025-08-04 08:08:38
10400
代码可运行
举报
文章被收录于专栏:C语言C语言
运行总次数:0
代码可运行

1. 源码及框架分析

SGI-STL30版本源代码,map和set的源代码在map/set/stl_map.h/stl_set.h/stl_tree.h等几个头文件 中。 map和set的实现结构框架核心部分截取出来如下:

代码语言:javascript
代码运行次数:0
运行
复制
// set
#ifndef __SGI_STL_INTERNAL_TREE_H
#include <stl_tree.h>
#endif
#include <stl_set.h>
#include <stl_multiset.h>
// map
#ifndef __SGI_STL_INTERNAL_TREE_H
#include <stl_tree.h>
#endif
#include <stl_map.h>
#include <stl_multimap.h>
// stl_set.h
template <class Key, class Compare = less<Key>, class Alloc = alloc>
class set {
public:
	// typedefs:
	typedef Key key_type;
	typedef Key value_type;
private:
	typedef rb_tree<key_type, value_type,
		identity<value_type>, key_compare, Alloc> rep_type;
	rep_type t; // red-black tree representing set
};
// stl_map.h
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
class map {
public:
	// typedefs:
	typedef Key key_type;
	typedef T mapped_type;
	typedef pair<const Key, T> value_type;
private:
	typedef rb_tree<key_type, value_type,
		select1st<value_type>, key_compare, Alloc> rep_type;
	rep_type t; // red-black tree representing map
};
// stl_tree.h
struct __rb_tree_node_base
{
	typedef __rb_tree_color_type color_type;
	typedef __rb_tree_node_base* base_ptr;
	color_type color;
	base_ptr parent;
	base_ptr left;
	base_ptr right;
};
// stl_tree.h
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc
	= alloc>
class rb_tree {
protected:
	typedef void* void_pointer;
	typedef __rb_tree_node_base* base_ptr;
	typedef __rb_tree_node<Value> rb_tree_node;
	typedef rb_tree_node* link_type;
	typedef Key key_type;
	typedef Value value_type;
public:
	// insert用的是第二个模板参数左形参
	pair<iterator, bool> insert_unique(const value_type& x);
	// erase和find用第一个模板参数做形参
	size_type erase(const key_type& x);
	iterator find(const key_type& x);
protected:
	size_type node_count; // keeps track of size of tree
	link_type header;
};
template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
	typedef __rb_tree_node<Value>* link_type;
	Value value_field;
};

• set和map分别是key和key-value两种模型,按照一般的思路,我们似乎需要实现两套模版但是通过下图对框架的分析,底层红黑树实现时,我们可以看到源码中rb_tree用了一个巧妙的泛型思想实现,rb_tree是实现key的搜索场景,还是key/value的搜索场景不是直接写死的,而是由第二个模板参数Value决定_rb_tree_node中存储的数据类型(Value这里只是名字命名的问题与key-value无关。。 • rb_tree底层不确定Value类型,但是上层知道,set实例化rb_tree时第二个模板参数给的是key,map实例化rb_tree时第二个模板参数给的是pair<const key, T>,这样一颗红黑树既可以实现key搜索场景的set,也可以实现key/value搜索场景的map。

• 要注意一下,源码里面模板参数是用T代表value,而内部写的value_type不是我们我们日常key/value场景中说的value,源码中的value_type反而是红黑树结点中存储的真实的数据的类型。 • 那在rb_tree第二个模板参数Value已经控制了红黑树结点中存储的数据类型的情况下,为什么还要传第一个模板参数Key呢? 尤其是set,两个模板参数实例化之后是一样的,这是很多读者这时的一个疑问。 要注意的是对于map和set,find/erase封装时的函数参数都是Key,所以第一个模板参数是传给find/erase等函数做形参的类型的。对于set而言两个参数是一样的,但是对于map而言就完全不一样了,map 的insert的是Value实例化之后的pair对象,但是find和ease的是Key对象。所以模版参数Key的存在主要解决的是map的find/erase的函数参数问题

2. 模拟实现map和set

2.1 实现出复用红黑树的框架,并支持insert

• 参考源码框架,map和set复用之前我们实现的红黑树(相关细节不了解的可以翻阅前文红黑树的文章)。 •源码的模版参数命名与key-value模型冲突,所以我们这里相比源码调整一下,key参数就用K,value参数就用V,红黑树中的数据类型,我们使用T。 • 其次因为RBTree实现了泛型,所以在内部封装实现具体功能函数时,我们无法从内部根据参数确定T参数到底是K,还是pair<K, V>,那么insert内部进行插入逻辑比较时,就没办法进行比较,因为pair的默认支持的是key和value一起参与比较,我们需要时的任何时候只比较key,所以我们在map和set层分别实现一个MapKeyOfT和SetKeyOfT的仿函数传给RBTree的KeyOfT,然后RBTree中通过KeyOfT仿函数取出T类型对象中的key,再进行比较,具体细节参考如下代码实现。

代码语言:javascript
代码运行次数:0
运行
复制
// 源码中pair支持的<重载实现
template <class T1, class T2>
bool operator< (const pair<T1, T2>& lhs, const pair<T1, T2>& rhs)
{
	return lhs.first < rhs.first || (!(rhs.first < lhs.first) &&
		lhs.second < rhs.second);
}

// Mymap.h,map基本骨架
namespace zlr
{
	template<class K, class V>
	class map
	{
		struct MapKeyOfT//取出key的仿函数
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		bool insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}
	private:
		RBTree<K, pair<K, V>, MapKeyOfT> _t;
	};
}

// Myset.h,set基本骨架
namespace zlr
{
	template<class K>
	class set
	{
		struct SetKeyOfT//取出key的仿函数
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		bool insert(const K& key)
		{
			return _t.Insert(key);
		}
	private:
		RBTree<K, K, SetKeyOfT> _t;
	};
}


// RBTree.h
enum Colour
{
	RED,
	BLACK
};

template<class T>
struct RBTreeNode//红黑树节点
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Colour _col;
	RBTreeNode(const T& data)
		: _data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
	{
	}
};

template<class K, class T, class KeyOfT>
class RBTree//红黑树封装
{
private:
	typedef RBTreeNode<T> Node;
	Node* _root = nullptr;
public:
	bool Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return true;
		}
		KeyOfT kot;
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(data);
		Node* newnode = cur;
		// 新增结点。颜色给红色
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;
		//...
		return true;
	}
}

2.2 支持iterator的实现

库中iterator核心源代码
代码语言:javascript
代码运行次数:0
运行
复制
struct __rb_tree_base_iterator
{
	typedef __rb_tree_node_base::base_ptr base_ptr;
	base_ptr node;
	void increment()
	{
		if (node->right != 0) {
			node = node->right;
			while (node->left != 0)
				node = node->left;
		}
		else {
			base_ptr y = node->parent;
			while (node == y->right) {
				node = y;
				y = y->parent;
			}
			if (node->right != y)
				node = y;
		}
	}
	void decrement()
	{
		if (node->color == __rb_tree_red &&
			node->parent->parent == node)
			node = node->right;
		else if (node->left != 0) {
			base_ptr y = node->left;
			while (y->right != 0)
				y = y->right;
			node = y;
		}
		else {
			base_ptr y = node->parent;
			while (node == y->left) {
				node = y;
				y = y->parent;
			}
			node = y;
		}
	}
};
template <class Value, class Ref, class Ptr>
struct __rb_tree_iterator : public __rb_tree_base_iterator
{
	typedef Value value_type;
	typedef Ref reference;
	typedef Ptr pointer;
	typedef __rb_tree_iterator<Value, Value&, Value*> iterator;
	__rb_tree_iterator() {}
	__rb_tree_iterator(link_type x) { node = x; }
	__rb_tree_iterator(const iterator& it) { node = it.node; }
	reference operator*() const { return link_type(node)->value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
	pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
	self& operator++() { increment(); return *this; }
	self& operator--() { decrement(); return *this; }
	inline bool operator==(const __rb_tree_base_iterator& x,
		const __rb_tree_base_iterator& y) {
		return x.node == y.node;
	}
	inline bool operator!=(const __rb_tree_base_iterator& x,
		const __rb_tree_base_iterator& y) {
		return x.node != y.node;
	}
iterator骨架
代码语言:javascript
代码运行次数:0
运行
复制
template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T, Ref, Ptr> Self;
	Node* _node;
	Node* _root;
	RBTreeIterator(Node* node, Node* root)
		:_node(node)
		, _root(root)
	{
	}

};

由于需要找到树的根节点,我们这里创建指针管理下。

iterator实现思路分析

• iterator实现的大框架跟list的iterator思路是一致的用一个类型封装结点的指针,再通过重载运算符实现,迭代器像指针一样访问的行为。 • 这里的难点是operator++和operator--的实现。根据泛型思想,对于封装我们希望能够摒弃底层的差异,因此迭代器这里我们希望++、--能像正常指针一样顺序遍历,map和set的迭代器走的是中序遍历,左子树->根结点->右子树那么begin()会返回中序第一个结点的iterator也就是10所在结点的迭代器

代码语言:javascript
代码运行次数:0
运行
复制
Iterator Begin()
	{
		Node* leftMost = _root;
		while (leftMost && leftMost->_left)
		{
			leftMost = leftMost->_left;
		}
		return Iterator(leftMost, _root);
	}

迭代器++的核心逻辑就是不看全局,只看局部,只考虑当前中序局部要访问的下一个结点。 • 迭代器++时,如果it指向的结点的右子树不为空,代表当前结点已经访问完了,要访问下一个结点是右子树的中序第一个,一棵树中序第一个是最左结点,所以直接找右子树的最左结点即可。 • 迭代器++时,如果it指向的结点的右子树空,代表当前结点已经访问完了且当前结点所在的子树也访问完了,要访问的下一个结点在当前结点的祖先里面,所以要沿着当前结点到根的祖先路径向上找。 • 如果当前结点是父亲的右,根据中序左子树->根结点->右子树,当前当前结点所在的子树访问完了,当前结点所在父亲的子树也访问完了,那么下一个访问的需要继续往根的祖先中去找直到找到孩子是父亲左的那个祖先就是中序要问题的下一个结点。如下图:it指向15,15右为空,15是10的右,15所在子树话访问完了,10所在子树也访问完了,继续往上找,10是18的左,那么下一个访问的结点就是18。

如果当前结点是父亲的左,根据中序左子树->根结点->右子树,那么下一个访问的结点就是当前结点的父亲;如下图:it指向25,25右为空,25是30的左,所以下一个访问的结点就是30。

end()如何表示呢?如下图:当it指向50时,++it时,50是40的右,40是30的右,30是18的右,18到根没有父亲,没有找到孩子是父亲左的那个祖先,这时父亲为空了,那我们就把it中的结点指针置为nullptr,我们用nullptr去充当end,这样子即使是空树,迭代器等于end(),也不会进循环,不会有问题。

代码语言:javascript
代码运行次数:0
运行
复制
Iterator End()
	{
		return Iterator(nullptr, _root);
	}

需要补充的是stl源码中相关的代码实现与我们这里不同,源码中红黑树增加了一个哨兵位头结点做为end()(对于这个节点颜色规定为红色)这哨兵位头结点和根互为父亲,左指向最左结点,右指向最右结点。相比我们用nullptr作为end(),差别不大,他能实现的,我们也能实现。只是--end()判断到结点时空,特殊处理一下,让迭代器结点指向最右结点。具体参考迭代器--实现。

总的来说源码中的对--end()处理方便了我们找到根节点与最左和最右节点,但是在插入删除等情况下,还多出了更新根哨兵位左右指针的消耗

• 迭代器--的实现跟++的思路完全类似,逻辑正好反过来即可,因为他访问顺序是右子树->根结点->左子树,具体参考下面代码实现。

代码语言:javascript
代码运行次数:0
运行
复制
Self& operator--()
{
	if (_node == nullptr) // end()
	{
		// --end(),特殊处理,走到中序最后一个结点,整棵树的最右结点
		Node* rightMost = _root;
		while (rightMost && rightMost->_right)
		{
			rightMost = rightMost->_right;
		}
		_node = rightMost;
	}
	else if (_node->_left)
	{
		// 左子树不为空,中序左子树最后一个
		Node* rightMost = _node->_left;
		while (rightMost->_right)
		{
			rightMost = rightMost->_right;
		}
		_node = rightMost;
	}
	else
	{
		// 孩子是父亲右的那个祖先
		Node* cur = _node;
		Node* parent = cur->_parent;
		while (parent && cur == parent->_left)
		{
			cur = parent;
			parent = cur->_parent;
		}
		_node = parent;
	}
	return *this;
}

map和set的迭代器这里需要额外说明的是由于key-value模型的key不支持修改,value支持修改,迭代器const的问题上我们需要额外处理。 源码中set是直接使用const迭代器封装普通迭代器,来保证key不被修改,但是这种方式在层层传递参数时会出现问题,处理麻烦些,参考源码中map的处理,我们这里换种方式s。

• et的iterator不支持修改,所以我们把set的第二个模板参数改成const K即可, RBTree<K, const K, SetKeyOfT> _t; • map的iterator不支持修改key但是可以修改value,我们把map的第二个模板参数pair的第一个参数改成const K即可, RBTree<K, pair<const K, V>, MapKeyOfT> _t; 通过这种方式,传递参数,模版实例化后key就无法修改,value可以修改,处理相对简单。 需要注意的是下图中我们在set中定义内嵌类型是,模版参数K前也要对应加上const,否则会出现类型不一致导致报错。

• 迭代器其他功能类似引用、解引用、比较是否相等类似之前容器迭代器的实现,我们返回迭代器的内部的数据即可,同样我们采用模版参数实例化来处理返回值是否const的问题。

代码语言:javascript
代码运行次数:0
运行
复制
	Ref operator*()
	{
		return _node->_data;
	}
	Ptr operator->()
	{
		return &_node->_data;
	}
	bool operator!= (const Self& s) const
	{
		return _node != s._node;
	}
	bool operator== (const Self& s) const
	{
		return _node == s._node;
	}

2.3 map支持[]

• map要支持[]主要需要insert返回值支持,修改RBtree中的insert返回值为pair<Iterator, bool> Insert(const T& data),如果值树中有,会返回值的迭代器,如果没有,会进行插入,并返回结果 • 有了insert支持[]实现就很简单了,具体参考下面代码实现

代码语言:javascript
代码运行次数:0
运行
复制
		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}

2.4 map和set代码完整实现代码

需要说明的是在map和set中定义内嵌类型(这里定义迭代器),因为编译器无法确定这里是类还是变量,我们这里需要typename注明告诉编译器这里是类型,使得代码可以通过编译器检查。

代码语言:javascript
代码运行次数:0
运行
复制
// Myset.h
#include"RBTree.h"
namespace zlr
{
	template<class K>
	class set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;
		typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator
			const_iterator;
		iterator begin()
		{
			return _t.Begin();
		}
		iterator end()
		{
			return _t.End();
		}
		const_iterator begin() const
		{
			return _t.Begin();
		}
		const_iterator end() const
		{
			return _t.End();
		}
		pair<iterator, bool> insert(const K& key)
		{
			return _t.Insert(key);
		}
		iterator find(const K& key)
		{
			return _t.Find(key);
		}
	private:
		RBTree<K, const K, SetKeyOfT> _t;
	};
	void Print(const set<int>& s)
	{
		set<int>::const_iterator it = s.end();
		while (it != s.begin())
		{
			--it;
			// 不支持修改
			//*it += 2;
			cout << *it << " ";
		}
		cout << endl;
	}
	void test_set()
	{
		set<int> s;
		int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
		for (auto e : a)
		{
			s.insert(e);
		}
		for (auto e : s)
		{
			cout << e << " ";
		}
		cout << endl;
		Print(s);
	}
}
// Mymap.h
#include"RBTree.h"
namespace zlr
{
	template<class K, class V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator
			iterator;
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::ConstIterator
			const_iterator;
		iterator begin()
		{
			return _t.Begin();
		}
		iterator end()
		{
			return _t.End();
		}
		const_iterator begin() const
		{
			return _t.Begin();
		}
		const_iterator end() const
		{
			return _t.End();
		}
		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}
		iterator find(const K& key)
		{
			return _t.Find(key);
		}
		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}
	private:
		RBTree<K, pair<const K, V>, MapKeyOfT> _t;
	};
	void test_map()
	{
		map<string, string> dict;
		dict.insert({ "sort", "排序" });
		dict.insert({ "left", "左边" });
		dict.insert({ "right", "右边" });
		dict["left"] = "左边,剩余";
		dict["insert"] = "插入";
		dict["string"];
		map<string, string>::iterator it = dict.begin();
		while (it != dict.end())
		{
			// 不能修改first,可以修改second
			//it->first += 'x';
			it->second += 'x';
			cout << it->first << ":" << it->second << endl;
			++it;
		}
		cout << endl;
	}
}
// RBtree.h
enum Colour
{
	RED,
	BLACK
};
template<class T>
struct RBTreeNode
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Colour _col;
	RBTreeNode(const T& data)
		: _data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
	{
	}
};


template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef RBTreeIterator<T, Ref, Ptr> Self;
	Node* _node;
	Node* _root;
	RBTreeIterator(Node* node, Node* root)
		:_node(node)
		, _root(root)
	{
	}
	Self& operator++()
	{
		if (_node->_right)
		{
			// 右不为空,右子树最左结点就是中序第一个
			Node* leftMost = _node->_right;
			while (leftMost->_left)
			{
				leftMost = leftMost->_left;
			}
			_node = leftMost;
		}
		else
		{
			// 孩子是父亲左的那个祖先
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = parent;
				parent = cur->_parent;
			}
			_node = parent;
		}
		return *this;
	}
	Self& operator--()
	{
		if (_node == nullptr) // end()
		{
			// --end(),特殊处理,走到中序最后一个结点,整棵树的最右结点
			Node* rightMost = _root;
			while (rightMost && rightMost->_right)
			{
				rightMost = rightMost->_right;
			}
			_node = rightMost;
		}
		else if (_node->_left)
		{
			// 左子树不为空,中序左子树最后一个
			Node* rightMost = _node->_left;
			while (rightMost->_right)
			{
				rightMost = rightMost->_right;
			}
			_node = rightMost;
		}
		else
		{
			// 孩子是父亲右的那个祖先
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_left)
			{
				cur = parent;
				parent = cur->_parent;
			}
			_node = parent;
		}
		return *this;
	}
	Ref operator*()
	{
		return _node->_data;
	}
	Ptr operator->()
	{
		return &_node->_data;
	}
	bool operator!= (const Self& s) const
	{
		return _node != s._node;
	}
	bool operator== (const Self& s) const
	{
		return _node == s._node;
	}
};


template<class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef RBTreeIterator<T, T&, T*> Iterator;
	typedef RBTreeIterator<T, const T&, const T*> ConstIterator;
	Iterator Begin()
	{
		Node* leftMost = _root;
		while (leftMost && leftMost->_left)
		{
			leftMost = leftMost->_left;
		}
		return Iterator(leftMost, _root);
	}
	Iterator End()
	{
		return Iterator(nullptr, _root);
	}
	ConstIterator Begin() const
	{
		Node* leftMost = _root;
		while (leftMost && leftMost->_left)
		{
			leftMost = leftMost->_left;
		}
		return ConstIterator(leftMost, _root);
	}
	ConstIterator End() const
	{
		return ConstIterator(nullptr, _root);
	}
	RBTree() = default;
	~RBTree()
	{
		Destroy(_root);
		_root = nullptr;
	}
	pair<Iterator, bool> Insert(const T & data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return make_pair(Iterator(_root, _root), true);
		}
		KeyOfT kot;
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(Iterator(cur, _root), false);
			}
		}
		cur = new Node(data);
		Node* newnode = cur;
		// 新增结点。颜色红色给红色
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			//		g
			// p		u
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)
				{
					// u存在且为红 -》变色再继续往上处理
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					// u存在且为黑或不存在 -》旋转+变色
					if (cur == parent->_left)
					{
						//		g
						// p		u
						//c
						//单旋
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//		g
						// p		u
						//		c
						//双旋
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else
			{
				//		g
				// u		p
				Node* uncle = grandfather->_left;
				// 叔叔存在且为红,->变色即可
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					// 继续往上处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else // 叔叔不存在,或者存在且为黑
				{
					// 情况二:叔叔不存在或者存在且为黑
					// 旋转+变色
					//		g
					// u		p
					//				c
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						// g
						// u p
						// c
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return make_pair(Iterator(newnode, _root), true);
}

Iterator Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_kv.first < key)
		{
			cur = cur->_right;
		}
		else if (cur->_kv.first > key)
		{
			cur = cur->_left;
		}
		else
		{
			return Iterator(cur, _root);
		}
	}
	return End();
}
private:
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		Node* parentParent = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (parentParent == nullptr)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}
			subR->_parent = parentParent;
		}
	}
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		Node* parentParent = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;
		if (parentParent == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parent == parentParent->_left)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}
			subL->_parent = parentParent;
		}
	}
	void Destroy(Node* root)
	{
		if (root == nullptr)
			return;
		Destroy(root->_left);
		Destroy(root->_right);
		delete root;
	}
private:
	Node* _root = nullptr;
};
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-07-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 源码及框架分析
  • 2. 模拟实现map和set
    • 2.1 实现出复用红黑树的框架,并支持insert
    • 2.2 支持iterator的实现
      • 库中iterator核心源代码
      • iterator骨架
      • iterator实现思路分析
    • 2.3 map支持[]
    • 2.4 map和set代码完整实现代码
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档