鸿蒙内核实现了Futex
,系列篇将用两篇来介绍快锁,主要两个原因:
Futex
的文章很少,全面深入内核介绍的就更少,所以来一次详细整理和挖透。Futex
,并借助一个demo
来说清楚整个过程。Futex
(Fast userspace mutex
,用户态快速互斥锁),系列篇简称 快锁 ,是一个在Linux
上实现锁定和构建高级抽象锁如信号量和POSIX
互斥的基本工具,它第一次出现在linux
内核开发的2.5.7
版;其语义在2.5.40
固定下来,然后在2.6.x
系列稳定版内核中出现,是内核提供的一种系统调用能力。通常作为基础组件与用户态的相关锁逻辑结合组成用户态锁,是一种用户态与内核态共同作用的锁,其用户态部分负责锁逻辑,内核态部分负责锁调度。
当用户态线程请求锁时,先在用户态进行锁状态的判断维护,若此时不产生锁的竞争,则直接在用户态进行上锁返回;反之,则需要进行线程的挂起操作,通过Futex
系统调用请求内核介入来挂起线程,并维护阻塞队列。
当用户态线程释放锁时,先在用户态进行锁状态的判断维护,若此时没有其他线程被该锁阻塞,则直接在用户态进行解锁返回;反之,则需要进行阻塞线程的唤醒操作,通过Futex
系统调用请求内核介入来唤醒阻塞队列中的线程。
mutex
)是必须进入内核态才知道锁可不可用,没人跟你争就拿走锁回到用户态,有人争就得干等 (包括 有限时间等和无限等待两种,都需让出CPU
执行权) 或者放弃本次申请回到用户态继续执行。那为何互斥锁一定要陷入内核态检查呢? 互斥锁(mutex
) 本质是竞争内核空间的某个全局变量(LosMux
结构体)。应用程序也有全局变量,但其作用域只在自己的用户空间中有效,属于内部资源,有竞争也是应用程序自己内部解决。而应用之间的资源竞争(即内核资源)就需要内核程序来解决,内核空间只有一个,内核的全局变量当然要由内核来管理。应用程序想用内核资源就必须经过系统调用陷入内核态,由内核程序接管CPU
,所谓接管本质是要改变程序状态寄存器,CPU
将从用户态栈切换至内核态栈运行,执行完成后又要切回用户态栈中继续执行,如此一来栈间上下文的切换就存在系统性能的损耗。没看明白的请前往系列篇 (互斥锁篇) 翻看。看个linux futex官方demo
详细说明下用户态下使用Futex
的整个过程,代码不多,但涉及内核的知识点很多,通过它可以检验出内核基本功扎实程度。
//futex_demo.c
#define _GNU_SOURCE
#include <stdio.h>
#include <errno.h>
#include <stdatomic.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <linux/futex.h>
#include <sys/time.h>
#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)
static uint32_t *futex1, *futex2, *iaddr;
/// 快速系统调用
static int futex(uint32_t *uaddr, int futex_op, uint32_t val,
const struct timespec *timeout, uint32_t *uaddr2, uint32_t val3)
{
return syscall(SYS_futex, uaddr, futex_op, val,
timeout, uaddr2, val3);
}
/// 申请快锁
static void fwait(uint32_t *futexp)
{
long s;
while (1) {
const uint32_t one = 1;
if (atomic_compare_exchange_strong(futexp, &one, 0))
break; //申请快锁成功
//申请快锁失败,需等待
s = futex(futexp, FUTEX_WAIT, 0, NULL, NULL, 0);
if (s == -1 && errno != EAGAIN)
errExit("futex-FUTEX_WAIT");
}
}
/// 释放快锁
static void fpost(uint32_t *futexp)
{
long s;
const uint32_t zero = 0;
if (atomic_compare_exchange_strong(futexp, &zero, 1)) {//释放快锁成功
s = futex(futexp, FUTEX_WAKE, 1, NULL, NULL, 0);//唤醒等锁 进程/线程
if (s == -1)
errExit("futex-FUTEX_WAKE");
}
}
/// 父子进程竞争快锁
int main(int argc, char *argv[])
{
pid_t childPid;
int nloops;
setbuf(stdout, NULL);
nloops = (argc > 1) ? atoi(argv[1]) : 3;
iaddr = mmap(NULL, sizeof(*iaddr) * 2, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED, -1, 0);//创建可读可写匿名共享内存
if (iaddr == MAP_FAILED)
errExit("mmap");
futex1 = &iaddr[0]; //绑定锁一地址
futex2 = &iaddr[1]; //绑定锁二地址
*futex1 = 0; // 锁一不可申请
*futex2 = 1; // 锁二可申请
childPid = fork();
if (childPid == -1)
errExit("fork");
if (childPid == 0) {//子进程返回
for (int j = 0; j < nloops; j++) {
fwait(futex1);//申请锁一
printf("子进程 (%jd) %d\n", (intmax_t) getpid(), j);
fpost(futex2);//释放锁二
}
exit(EXIT_SUCCESS);
}
// 父进程返回执行
for (int j = 0; j < nloops; j++) {
fwait(futex2);//申请锁二
printf("父进程 (%jd) %d\n", (intmax_t) getpid(), j);
fpost(futex1);//释放锁一
}
wait(NULL);
exit(EXIT_SUCCESS);
}
代码在wsl2
上编译运行结果如下:
root@DESKTOP-5PBPDNG:/home/turing# gcc ./futex_demo.c -o futex_demo
root@DESKTOP-5PBPDNG:/home/turing# ./futex_demo
父进程 (283) 0
子进程 (284) 0
父进程 (283) 1
子进程 (284) 1
父进程 (283) 2
子进程 (284) 2
解读
mmap
创建一个可读可写的共享内存iaddr[2]
整型数组,完成两个futex
锁的初始化。内核会在内存分配一个共享线性区(MAP_ANONYMOUS
| MAP_SHARED
),该线性区可读可写( PROT_READ
| PROT_WRITE
) futex1 = &iaddr[0]; //绑定锁一地址
futex2 = &iaddr[1]; //绑定锁二地址
*futex1 = 0; // 锁一不可申请
*futex2 = 1; // 锁二可申请
如此futex1
和futex2
有初始值并都是共享变量,想详细了解mmap
内核实现的可查看系列篇 (线性区篇) 和 (共享内存篇) 有详细介绍。
childPid = fork();
创建了一个子进程,fork会拷贝父进程线性区的映射给子进程,导致的结果就是父进程的共享线性区到子进程这也是共享线性区,映射的都是相同的物理地址。对fork
不熟悉的请前往翻看,系列篇 (fork篇)| 一次调用,两次返回 专门说它。fwait
(申请锁)与fpost
(释放锁)成对出现,单独看下申请锁过程 /// 申请快锁
static void fwait(uint32_t *futexp)
{
long s;
while (1) {
const uint32_t one = 1;
if (atomic_compare_exchange_strong(futexp, &one, 0))
break; //申请快锁成功
//申请快锁失败,需等待
s = futex(futexp, FUTEX_WAIT, 0, NULL, NULL, 0);
if (s == -1 && errno != EAGAIN)
errExit("futex-FUTEX_WAIT");
}
}
死循环的break条件是 atomic_compare_exchange_strong
为真,这是个原子比较操作,此处必须这么用,至于为什么请前往翻看系列篇 (原子操作篇)| 谁在为完整性保驾护航 ,注意它是理解Futex
的关键所在,它的含义是
在头文件<stdatomic.h>中定义
_Bool atomic_compare_exchange_strong(volatile A * obj,C * expected,C desired);
将所指向的值obj与所指向的值进行原子比较expected
,如果相等,则用前者替换前者desired
(执行读取 - 修改 - 写入操作)。否则,加载实际值所指向的obj
进入*expected
(进行负载操作)。
欢迎大家关注公众号<程序猿百晓生>,可以了解到以下知识点。
`欢迎大家关注公众号<程序猿百晓生>,可以了解到以下知识点。`
1.OpenHarmony开发基础
2.OpenHarmony北向开发环境搭建
3.鸿蒙南向开发环境的搭建
4.鸿蒙生态应用开发白皮书V2.0 & V3.0
5.鸿蒙开发面试真题(含参考答案)
6.TypeScript入门学习手册
7.OpenHarmony 经典面试题(含参考答案)
8.OpenHarmony设备开发入门【最新版】
9.沉浸式剖析OpenHarmony源代码
10.系统定制指南
11.【OpenHarmony】Uboot 驱动加载流程
12.OpenHarmony构建系统--GN与子系统、部件、模块详解
13.ohos开机init启动流程
14.鸿蒙版性能优化指南
.......
什么意思 ? 来个直白的解释 :
futexp == 1
则 atomic_compare_exchange_strong
返回真,同时将 futexp
的值变成0
,1代表可以持有锁,一旦持有立即变0,别人就拿不到了。所以此处甚秒。而且这发生在用户态。futexp == 0
atomic_compare_exchange_strong
返回假,没有拿到锁,就需要陷入内核态去挂起任务等待锁的释放 futex(futexp, FUTEX_WAIT, 0, NULL, NULL, 0) //执行一个等锁的系统调用
参数四为NULL
代表不在内核态停留直接返回用户态,后续将在内核态部分详细说明。
childPid == 0
是子进程的返回。不断地申请futex1
释放futex2
if (childPid == 0) {//子进程返回
for (int j = 0; j < nloops; j++) {
fwait(futex1);
printf("子进程 (%jd) %d\n", (intmax_t) getpid(), j);
fpost(futex2);
}
exit(EXIT_SUCCESS);
}
futex2
释放futex1
// 父进程返回执行
for (int j = 0; j < nloops; j++) {
fwait(futex2);
printf("父进程 (%jd) %d\n", (intmax_t) getpid(), j);
fpost(futex1);
}
wait(NULL);
exit(EXIT_SUCCESS);
*futex1 = 0; *futex2 = 1;
,父进程在 fwait(futex2)
所以父进程的printf
将先执行,*futex2 = 0;
锁二变成不可申请,打印完成后释放fpost(futex1)
使其结果为*futex1 = 1;
表示锁一可以申请了,而子进程在等fwait(futex1)
,交替下来执行的结果为 父进程 (283) 0
子进程 (284) 0
父进程 (283) 1
子进程 (284) 1
父进程 (283) 2
子进程 (284) 2
以上是个简单的例子,只发生在两个进程抢一把锁的情况下,如果再多几个进程抢一把锁时情况就变复杂多了。
例如会遇到以下情况:
64
个,除去两个内核进程外,剩下的都归属用户进程,理论上用户进程可以创建很多快锁,这些快锁可以用于进程间(共享快锁)也可以用于线程间(私有快锁),在快锁的生命周期中该如何保存 ?如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙:
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。