一句话说的就是,DeepSeek V3证明了,不需要大规模的算力也能够把大模型的能力提升到和GPT-4o一样的水平。
DeepSeek V3展示了无需庞大算力也能打造媲美GPT-4o的大模型。其训练耗时仅278.8万GPU小时,总成本约为557.6万美元,而同规模的Llama 3 405B需要耗费3080万GPU小时,成本显著更高。
从论文中的公布细节可以得到它的训练成本估算:
比起动辄几百亿人民币都训练不出来一个好用的大模型,DeepSeek V3的训练简直颠覆了大家的想象。这里训练这么省钱当然主要是因为该模型原生就是FP8,还有在模型架构上做了一些优化导致模型训练成本很低。
先总结模型的一些细节,DeepSeek V3训练成本低的关键在于:
DeepSeek V3除了使用了FP8之外,还有一些其他的模型细节。比如它继续采用了多头潜在注意力(MLA)来实现高效推理。它在传统多头注意力机制(Multi-Head Attention)的基础上,引入了潜在特征(Latent Features)概念,进一步提高了对复杂关系的建模能力。
也就是先把token的特征压缩成一个小维度的latent vector,然后再通过一些简单的变换把它扩展到各个头需要的Key和Value空间。对于一些重要的信息,比如旋转位置编码RoPE,会进行单独处理,这样网络仍然可以保留时间和位置的信息。
在MOE架构中,引入了路由专家 (Routed Experts) 和共享专家 (Shared Experts) 。主要是用来激活那些参数需要被更新。
路由专家中主要是用来选择参数进行激活。对于每个输入的token,只有一部分路由专家会被选中来参与计算。这个选择过程是由一个门控机制决定的,比如DeepSeekMoE中用的那种根据亲和度分数来选的Top-K方式。
而共享专家始终参与所有输入的处理。无论输入是什么,所有共享专家都会贡献它们的力量。
还用到了一个MTP(多个tokens预测)技术,MTP的核心理念在于训练时,模型不仅要预测下一个token(就像传统语言模型那样),还要同时预测序列后面的几个token。这样一来,模型就能获得更丰富的训练信息,有助于它更深入地理解上下文以及长距离的依赖关系。
通过上面几个简单的trick,就可以很好的训练出一个质量不出的大模型出来,并且能够和GPT-4o和Claude 3.5相媲美。这个工作给很多公司提供了新的思路。其高效的训练方法和较低的计算成本,可以给其他没有资源的公司借鉴一下,也验证了大规模的GPU集群不是训练大模型的必要条件。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。