前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【文献】激光SLAM综述

【文献】激光SLAM综述

作者头像
一点人工一点智能
发布2022-12-27 10:44:11
4610
发布2022-12-27 10:44:11
举报
文章被收录于专栏:一点人工一点智能

本文选了两篇激光SLAM中文的综述文献,如果你是小白刚要入行SLAM,需要对SLAM增加一些基础了解,推荐详细阅读一下这两篇文献。

01 基于2D激光雷达的SLAM算法研究综述

摘要:移动机器人导航功能的实现需要同时定位与建图(SLAM)和路径规划这两方面的技术,其中由SLAM技术生成的栅格地图是移动机器人运用路径规划算法的前提。

2D激光SLAM由于其建图精度较高、性能稳定且价格便宜,在室内移动机器人中应用十分广泛。2D激光SLAM是指移动机器人在自身所处环境及位置先验信息未知的情况下,以2D激光雷达为主要传感器,感知周围环境信息,从而实现自身位姿的估计和地图的构建。

本文分为两部分,第一部分从激光测距原理入手,对三角法和飞行时间法进行了详细介绍和优缺点比较。第二部分从前端扫描匹配、后端优化、回环检测和地图构建这四个方面分别详细阐述了2D激光 SLAM系统框架。同时对主流2D激光SLAM算法进行了深入分析和优缺点比较,并对激光SLAM未来的发展进行了展望。

2D激光SLAM算法优缺点分析

02 3D激光雷达SLAM算法综述

摘要:无人平台在大范围环境中实现自主定位与导航的能力需求日益严苛,其中基于激光雷达的同步定位和绘图技术(SLAM)是主流的研究方案。

在这项工作中,本文系统概述了3D激光雷达SLAM算法框架和关键模块,分析阐述了近年来的研究热点问题和未来发展趋势,梳理了3D激光雷达SLAM算法性能的评估标准,并据此选取目前较为成熟的具有代表性的6种开源3D激光雷达SLAM算法在机器人操作系统(ROS)中进行了测试评估,基于KITTI基准数据集,从KITTI官方精度标准、SLAM算法精度指标、算法耗时和处理帧率3方面进行了横向比较。

结果表明,所选6种算法中LIO-SAM算法性能综合表现突出,其在00序列数据集的测试中,绝对轨迹误差(ATE)和相对位姿误差(RPE)的RMSE数据分别为1.303和0.028,算法处理的帧率(fps)为28.6,最后依据CiteSpace分析讨论了3D激光雷达SLAM技术的应用趋势。

6 种开源 3D 激光雷达 SLAM 算法

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-10-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 一点人工一点智能 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档