前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析|附代码数据

R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析|附代码数据

原创
作者头像
拓端
发布2022-11-01 17:01:34
5970
发布2022-11-01 17:01:34
举报
文章被收录于专栏:拓端tecdat

全文下载链接:http://tecdat.cn/?p=19469

本文将分析工业指数(DJIA)。工业指数(DIJA)是一个股市指数,表明30家大型上市公司的价值。工业指数(DIJA)的价值基于每个组成公司的每股股票价格之和

时间序列分析模型 ARIMA-ARCH GARCH模型分析股票价格数据

本文将分析工业指数(DJIA)。工业指数(DIJA)是一个股市指数,表明30家大型上市公司的价值。工业指数(DIJA)的价值基于每个组成公司的每股股票价格之和。

本文将尝试回答的主要问题是:

  • 这些年来收益率和交易量如何变化?
  • 这些年来,收益率和交易量的波动如何变化?
  • 我们如何建模收益率波动?
  • 我们如何模拟交易量的波动?

为此,本文按以下内容划分:

第1部分: 获取每日和每周对数收益的 数据,摘要和图 第2部分: 获取每日交易量及其对数比率的数据,摘要和图 第3部分: 每日对数收益率分析和GARCH模型定义 第4部分: 每日交易量分析和GARCH模型定义

获取数据

利用quantmod软件包中提供的getSymbols()函数,我们可以获得2007年至2018年底的工业平均指数。

代码语言:javascript
复制
getSymbols("^DJI", from = "2007-01-01", to = "2019-01-01")dim(DJI)## [1] 3020    6class(DJI)## [1] "xts" "zoo"

让我们看一下DJI xts对象,它提供了六个时间序列,我们可以看到。

代码语言:javascript
复制
head(DJI)##            DJI.Open DJI.High  DJI.Low DJI.Close DJI.Volume DJI.Adjusted## 2007-01-03 12459.54 12580.35 12404.82  12474.52  327200000     12474.52## 2007-01-04 12473.16 12510.41 12403.86  12480.69  259060000     12480.69## 2007-01-05 12480.05 12480.13 12365.41  12398.01  235220000     12398.01## 2007-01-08 12392.01 12445.92 12337.37  12423.49  223500000     12423.49## 2007-01-09 12424.77 12466.43 12369.17  12416.60  225190000     12416.60## 2007-01-10 12417.00 12451.61 12355.63  12442.16  226570000     12442.16tail(DJI)##            DJI.Open DJI.High  DJI.Low DJI.Close DJI.Volume DJI.Adjusted## 2018-12-21 22871.74 23254.59 22396.34  22445.37  900510000     22445.37## 2018-12-24 22317.28 22339.87 21792.20  21792.20  308420000     21792.20## 2018-12-26 21857.73 22878.92 21712.53  22878.45  433080000     22878.45## 2018-12-27 22629.06 23138.89 22267.42  23138.82  407940000     23138.82## 2018-12-28 23213.61 23381.88 22981.33  23062.40  336510000     23062.40## 2018-12-31 23153.94 23333.18 23118.30  23327.46  288830000     23327.46

更准确地说,我们有可用的OHLC(开盘,高,低,收盘)指数值,调整后的收盘价和交易量。在这里,我们可以看到生成的相应图表。

我们在此分析调整后的收盘价。

代码语言:javascript
复制
DJI[,"DJI.Adjusted"]

简单对数收益率

简单的收益定义为:

对数收益率定义为:

我们计算对数收益率

代码语言:javascript
复制
CalculateReturns(dj_close, method = "log")

让我们看看。

代码语言:javascript
复制
head(dj_ret)##             DJI.Adjusted## 2007-01-04  0.0004945580## 2007-01-05 -0.0066467273## 2007-01-08  0.0020530973## 2007-01-09 -0.0005547987## 2007-01-10  0.0020564627## 2007-01-11  0.0058356461tail(dj_ret)##            DJI.Adjusted## 2018-12-21 -0.018286825## 2018-12-24 -0.029532247## 2018-12-26  0.048643314## 2018-12-27  0.011316355## 2018-12-28 -0.003308137## 2018-12-31  0.011427645

给出了下面的图。

可以看到波动率的急剧上升和下降。第3部分将对此进行深入验证。

辅助函数

我们需要一些辅助函数来简化一些基本的数据转换,摘要和绘图。

1.从xts转换为带有year and value列的数据框。这样就可以进行年度总结和绘制。

代码语言:javascript
复制
  df\_t <- data.frame(year = factor(year(index(data\_xts))), value = coredata(data_xts))  colnames(df_t) <- c( "year", "value")

2.摘要统计信息,用于存储为数据框列的数据。

代码语言:javascript
复制
 rownames(basicStats(rnorm(10,0,1))) # 基本统计数据输出行名称with(dataset, tapply(value, year, basicStats))

3.返回关联的列名。

代码语言:javascript
复制
  colnames(basicstats\[r, which(basicstats\[r,\] > threshold), drop = FALSE\])

4.基于年的面板箱线图。

代码语言:javascript
复制
  p <- ggplot(data = data, aes(x = year, y = value)) + theme\_bw() + theme(legend.position = "none") + geom\_boxplot(fill = "blue")

5.密度图,以年份为基准。

代码语言:javascript
复制
  p <- ggplot(data = data, aes(x = value)) + geom_density(fill = "lightblue")   p <- p + facet_wrap(. ~ year)

6.基于年份的QQ图。

代码语言:javascript
复制
  p <- ggplot(data = dataset, aes(sample = value)) + stat\_qq(colour = "blue") + stat\_qq_line()   p <- p + facet_wrap(. ~ year)

7. Shapiro检验

代码语言:javascript
复制
pvalue <- function (v) {  shapiro.test(v)$p.value}

每日对数收益率探索性分析

我们将原始的时间序列转换为具有年和值列的数据框。这样可以按年简化绘图和摘要。

代码语言:javascript
复制
head(ret_df)##   year         value## 1 2007  0.0004945580## 2 2007 -0.0066467273## 3 2007  0.0020530973## 4 2007 -0.0005547987## 5 2007  0.0020564627## 6 2007  0.0058356461tail(ret_df)##      year        value## 3014 2018 -0.018286825## 3015 2018 -0.029532247## 3016 2018  0.048643314## 3017 2018  0.011316355## 3018 2018 -0.003308137## 3019 2018  0.011427645

基本统计摘要

给出了基本统计摘要。

代码语言:javascript
复制
##                   2007       2008       2009       2010       2011## nobs        250.000000 253.000000 252.000000 252.000000 252.000000## NAs           0.000000   0.000000   0.000000   0.000000   0.000000## Minimum      -0.033488  -0.082005  -0.047286  -0.036700  -0.057061## Maximum       0.025223   0.105083   0.066116   0.038247   0.041533## 1. Quartile  -0.003802  -0.012993  -0.006897  -0.003853  -0.006193## 3. Quartile   0.005230   0.007843   0.008248   0.004457   0.006531## Mean          0.000246  -0.001633   0.000684   0.000415   0.000214## Median        0.001098  -0.000890   0.001082   0.000681   0.000941## Sum           0.061427  -0.413050   0.172434   0.104565   0.053810## SE Mean       0.000582   0.001497   0.000960   0.000641   0.000837## LCL Mean     -0.000900  -0.004580  -0.001207  -0.000848  -0.001434## UCL Mean      0.001391   0.001315   0.002575   0.001678   0.001861## Variance      0.000085   0.000567   0.000232   0.000104   0.000176## Stdev         0.009197   0.023808   0.015242   0.010182   0.013283## Skewness     -0.613828   0.224042   0.070840  -0.174816  -0.526083## Kurtosis      1.525069   3.670796   2.074240   2.055407   2.453822##                   2012       2013       2014       2015       2016## nobs        250.000000 252.000000 252.000000 252.000000 252.000000## NAs           0.000000   0.000000   0.000000   0.000000   0.000000## Minimum      -0.023910  -0.023695  -0.020988  -0.036402  -0.034473## Maximum       0.023376   0.023263   0.023982   0.038755   0.024384## 1. Quartile  -0.003896  -0.002812  -0.002621  -0.005283  -0.002845## 3. Quartile   0.004924   0.004750   0.004230   0.005801   0.004311## Mean          0.000280   0.000933   0.000288  -0.000090   0.000500## Median       -0.000122   0.001158   0.000728  -0.000211   0.000738## Sum           0.070054   0.235068   0.072498  -0.022586   0.125884## SE Mean       0.000470   0.000403   0.000432   0.000613   0.000501## LCL Mean     -0.000645   0.000139  -0.000564  -0.001298  -0.000487## UCL Mean      0.001206   0.001727   0.001139   0.001118   0.001486## Variance      0.000055   0.000041   0.000047   0.000095   0.000063## Stdev         0.007429   0.006399   0.006861   0.009738   0.007951## Skewness      0.027235  -0.199407  -0.332766  -0.127788  -0.449311## Kurtosis      0.842890   1.275821   1.073234   1.394268   2.079671##                   2017       2018## nobs        251.000000 251.000000## NAs           0.000000   0.000000## Minimum      -0.017930  -0.047143## Maximum       0.014468   0.048643## 1. Quartile  -0.001404  -0.005017## 3. Quartile   0.003054   0.005895## Mean          0.000892  -0.000231## Median        0.000655   0.000695## Sum           0.223790  -0.057950## SE Mean       0.000263   0.000714## LCL Mean      0.000373  -0.001637## UCL Mean      0.001410   0.001175## Variance      0.000017   0.000128## Stdev         0.004172   0.011313## Skewness     -0.189808  -0.522618## Kurtosis      2.244076   2.802996

在下文中,我们对上述一些相关指标进行了具体评论。

平均值

每日对数收益率具有正平均值的年份是:

代码语言:javascript
复制
filter_stats(stats, "Mean", 0)## \[1\] "2007" "2009" "2010" "2011" "2012" "2013" "2014" "2016" "2017"

按升序排列。

代码语言:javascript
复制
##           2008      2018   2015     2011     2007    2012     2014## Mean -0.001633 -0.000231 -9e-05 0.000214 0.000246 0.00028 0.000288##          2010  2016     2009     2017     2013## Mean 0.000415 5e-04 0.000684 0.000892 0.000933

中位数

正中位数是:

代码语言:javascript
复制
filter\_stats(dj\_stats, "Median", 0)## \[1\] "2007" "2009" "2010" "2011" "2013" "2014" "2016" "2017" "2018"

以升序排列。

代码语言:javascript
复制
##            2008      2015      2012     2017     2010     2018     2014## Median -0.00089 -0.000211 -0.000122 0.000655 0.000681 0.000695 0.000728##            2016     2011     2009     2007     2013## Median 0.000738 0.000941 0.001082 0.001098 0.001158

偏度

偏度(Skewness)可以用来度量随机变量概率分布的不对称性。

公式:

其中 

 是均值,  是标准差。

几何意义:

偏度的取值范围为(-∞,+∞)

当偏度<0时,概率分布图左偏(也叫负偏分布,其偏度<0)。

当偏度=0时,表示数据相对均匀的分布在平均值两侧,不一定是绝对的对称分布。

当偏度>0时,概率分布图右偏(也叫正偏分布,其偏度>0)。

例如上图中,左图形状左偏,右图形状右偏。

每日对数收益出现正偏的年份是:

代码语言:javascript
复制
## \[1\] "2008" "2009" "2012"

按升序返回对数偏度。

代码语言:javascript
复制
stats\["Skewness",order(stats\["Skewness",##               2007      2011      2018      2016      2014      2013## Skewness -0.613828 -0.526083 -0.522618 -0.449311 -0.332766 -0.199407##               2017      2010      2015     2012    2009     2008## Skewness -0.189808 -0.174816 -0.127788 0.027235 0.07084 0.224042

峰度

峰度(Kurtosis)可以用来度量随机变量概率分布的陡峭程度。

公式:

其中  是均值,  是标准差。

几何意义:

峰度的取值范围为[1,+∞),完全服从正态分布的数据的峰度值为 3,峰度值越大,概率分布图越高尖,峰度值越小,越矮胖。

例如上图中,左图是标准正太分布,峰度=3,右图的峰度=4,可以看到右图比左图更高尖。

通常我们将峰度值减去3,也被称为超值峰度(Excess Kurtosis),这样正态分布的峰度值等于0,当峰度值>0,则表示该数据分布与正态分布相比较为高尖,当峰度值<0,则表示该数据分布与正态分布相比较为矮胖。


每日对数收益出现超值峰度的年份是:

代码语言:javascript
复制
##  \[1\] "2007" "2008" "2009" "2010" "2011" "2012" "2013" "2014" "2015" "2016"## \[11\] "2017" "2018"

按升序返回超值峰度。

代码语言:javascript
复制
##             2012     2014     2013     2015     2007     2010    2009## Kurtosis 0.84289 1.073234 1.275821 1.394268 1.525069 2.055407 2.07424##              2016     2017     2011     2018     2008## Kurtosis 2.079671 2.244076 2.453822 2.802996 3.670796

2018年的峰度最接近2008年。

箱形图

我们可以看到2008年出现了最极端的值。从2009年开始,除了2011年和2015年以外,其他所有值的范围都变窄了。但是,与2017年和2018年相比,产生极端值的趋势明显改善。

密度图

代码语言:javascript
复制
densityplot(ret_df)

2007年具有显着的负偏。2008年的特点是平坦。2017年的峰值与2018年的平坦度和左偏一致。

shapiro检验

代码语言:javascript
复制
shapirot(ret_df)##            result## 2007 5.989576e-07## 2008 5.782666e-09## 2009 1.827967e-05## 2010 3.897345e-07## 2011 5.494349e-07## 2012 1.790685e-02## 2013 8.102500e-03## 2014 1.750036e-04## 2015 5.531137e-03## 2016 1.511435e-06## 2017 3.304529e-05## 2018 1.216327e-07

正常的零假设在2007-2018年的所有年份均被拒绝。

每周对数收益率探索性分析

可以从每日对数收益率开始计算每周对数收益率。让我们假设分析第{t-4,t-3,t-2,t-1,t}天的交易周,并知道第t-5天(前一周的最后一天)的收盘价。我们将每周的对数收益率定义为:

可以写为:

因此,每周对数收益率是应用于交易周窗口的每日对数收益率之和。

我们来看看每周的对数收益率。

该图显示波动率急剧上升和下降。我们将原始时间序列数据转换为数据框。

代码语言:javascript
复制
head(weekly\_ret\_df)##   year         value## 1 2007 -0.0061521694## 2 2007  0.0126690596## 3 2007  0.0007523559## 4 2007 -0.0062677053## 5 2007  0.0132434177## 6 2007 -0.0057588519tail(weekly\_ret\_df)##     year       value## 622 2018  0.05028763## 623 2018 -0.04605546## 624 2018 -0.01189714## 625 2018 -0.07114867## 626 2018  0.02711928## 627 2018  0.01142764

基本统计摘要

代码语言:javascript
复制
dataframe\_basicstats(weekly\_ret_df)##                  2007      2008      2009      2010      2011      2012## nobs        52.000000 52.000000 53.000000 52.000000 52.000000 52.000000## NAs          0.000000  0.000000  0.000000  0.000000  0.000000  0.000000## Minimum     -0.043199 -0.200298 -0.063736 -0.058755 -0.066235 -0.035829## Maximum      0.030143  0.106977  0.086263  0.051463  0.067788  0.035316## 1. Quartile -0.009638 -0.031765 -0.015911 -0.007761 -0.015485 -0.010096## 3. Quartile  0.014808  0.012682  0.022115  0.016971  0.014309  0.011887## Mean         0.001327 -0.008669  0.003823  0.002011  0.001035  0.001102## Median       0.004244 -0.006811  0.004633  0.004529  0.001757  0.001166## Sum          0.069016 -0.450811  0.202605  0.104565  0.053810  0.057303## SE Mean      0.002613  0.006164  0.004454  0.003031  0.003836  0.002133## LCL Mean    -0.003919 -0.021043 -0.005115 -0.004074 -0.006666 -0.003181## UCL Mean     0.006573  0.003704  0.012760  0.008096  0.008736  0.005384## Variance     0.000355  0.001975  0.001051  0.000478  0.000765  0.000237## Stdev        0.018843  0.044446  0.032424  0.021856  0.027662  0.015382## Skewness    -0.680573 -0.985740  0.121331 -0.601407 -0.076579 -0.027302## Kurtosis    -0.085887  5.446623 -0.033398  0.357708  0.052429 -0.461228##                  2013      2014      2015      2016      2017      2018## nobs        52.000000 52.000000 53.000000 52.000000 52.000000 53.000000## NAs          0.000000  0.000000  0.000000  0.000000  0.000000  0.000000## Minimum     -0.022556 -0.038482 -0.059991 -0.063897 -0.015317 -0.071149## Maximum      0.037702  0.034224  0.037693  0.052243  0.028192  0.050288## 1. Quartile -0.001738 -0.006378 -0.012141 -0.007746 -0.002251 -0.011897## 3. Quartile  0.011432  0.010244  0.009620  0.012791  0.009891  0.019857## Mean         0.004651  0.001756 -0.000669  0.002421  0.004304 -0.001093## Median       0.006360  0.003961  0.000954  0.001947  0.004080  0.001546## Sum          0.241874  0.091300 -0.035444  0.125884  0.223790 -0.057950## SE Mean      0.001828  0.002151  0.002609  0.002436  0.001232  0.003592## LCL Mean     0.000981 -0.002563 -0.005904 -0.002470  0.001830 -0.008302## UCL Mean     0.008322  0.006075  0.004567  0.007312  0.006778  0.006115## Variance     0.000174  0.000241  0.000361  0.000309  0.000079  0.000684## Stdev        0.013185  0.015514  0.018995  0.017568  0.008886  0.026154## Skewness    -0.035175 -0.534403 -0.494963 -0.467158  0.266281 -0.658951## Kurtosis    -0.200282  0.282354  0.665460  2.908942 -0.124341 -0.000870

在下文中,我们对上述一些相关指标进行了具体评论。

平均值

每周对数收益呈正平均值的年份是:

代码语言:javascript
复制
## \[1\] "2007" "2009" "2010" "2011" "2012" "2013" "2014" "2016" "2017"

所有平均值按升序排列。

代码语言:javascript
复制
##           2008      2018      2015     2011     2012     2007     2014## Mean -0.008669 -0.001093 -0.000669 0.001035 0.001102 0.001327 0.001756##          2010     2016     2009     2017     2013## Mean 0.002011 0.002421 0.003823 0.004304 0.004651

中位数

中位数是:

代码语言:javascript
复制
##  \[1\] "2007" "2009" "2010" "2011" "2012" "2013" "2014" "2015" "2016" "2017"## \[11\] "2018"

所有中值按升序排列。

代码语言:javascript
复制
##             2008     2015     2012     2018     2011     2016     2014## Median -0.006811 0.000954 0.001166 0.001546 0.001757 0.001947 0.003961##           2017     2007     2010     2009    2013## Median 0.00408 0.004244 0.004529 0.004633 0.00636

偏度

出现正偏的年份是:

代码语言:javascript
复制
stats(stats, "Skewness", 0)## \[1\] "2009" "2017"

所有偏度按升序排列。

代码语言:javascript
复制
stats\["Skewness",order(stats\["Skewness",,\])\]##              2008      2007      2018      2010      2014      2015## Skewness -0.98574 -0.680573 -0.658951 -0.601407 -0.534403 -0.494963##               2016      2011      2013      2012     2009     2017## Skewness -0.467158 -0.076579 -0.035175 -0.027302 0.121331 0.266281

峰度

出现正峰度的年份是:

代码语言:javascript
复制
filter_stats(stats, "Kurtosis", 0)## \[1\] "2008" "2010" "2011" "2014" "2015" "2016"

峰度值都按升序排列。

代码语言:javascript
复制
##               2012      2013      2017      2007      2009     2018## Kurtosis -0.461228 -0.200282 -0.124341 -0.085887 -0.033398 -0.00087##              2011     2014     2010    2015     2016     2008## Kurtosis 0.052429 0.282354 0.357708 0.66546 2.908942 5.446623

2008年也是每周峰度最高的年份。但是,在这种情况下,2017年的峰度为负,而2016年的峰度为第二。

箱形图

密度图

shapiro检验

代码语言:javascript
复制
shapirot(weekly_df)##            result## 2007 0.0140590311## 2008 0.0001397267## 2009 0.8701335006## 2010 0.0927104389## 2011 0.8650874270## 2012 0.9934600084## 2013 0.4849043121## 2014 0.1123139646## 2015 0.3141519756## 2016 0.0115380989## 2017 0.9465281164## 2018 0.0475141869

零假设在2007、2008、2016年被拒绝。

QQ图

在2008年尤其明显地违背正态分布的情况。

交易量探索性分析

在这一部分中,本文将分析道琼斯工业平均指数(DJIA)的交易量。

获取数据

每日量探索性分析

我们绘制每日交易量。

代码语言:javascript
复制
vol <- DJI\[,"DJI.Volume"\]plot(vol)

值得注意的是,2017年初的水平跃升,我们将在第4部分中进行研究。我们将时间序列数据和时间轴索引转换为数据框。

代码语言:javascript
复制
head(dj\_vol\_df)##   year     value## 1 2007 327200000## 2 2007 259060000## 3 2007 235220000## 4 2007 223500000## 5 2007 225190000## 6 2007 226570000tail(dj\_vol\_df)##      year     value## 3015 2018 900510000## 3016 2018 308420000## 3017 2018 433080000## 3018 2018 407940000## 3019 2018 336510000## 3020 2018 288830000

基本统计摘要

代码语言:javascript
复制
##                     2007         2008         2009         2010## nobs        2.510000e+02 2.530000e+02 2.520000e+02 2.520000e+02## NAs         0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00## Minimum     8.640000e+07 6.693000e+07 5.267000e+07 6.840000e+07## Maximum     4.571500e+08 6.749200e+08 6.729500e+08 4.598900e+08## 1. Quartile 2.063000e+08 2.132100e+08 1.961850e+08 1.633400e+08## 3. Quartile 2.727400e+08 3.210100e+08 3.353625e+08 2.219025e+08## Mean        2.449575e+08 2.767164e+08 2.800537e+08 2.017934e+08## Median      2.350900e+08 2.569700e+08 2.443200e+08 1.905050e+08## Sum         6.148432e+10 7.000924e+10 7.057354e+10 5.085193e+10## SE Mean     3.842261e+06 5.965786e+06 7.289666e+06 3.950031e+06## LCL Mean    2.373901e+08 2.649672e+08 2.656970e+08 1.940139e+08## UCL Mean    2.525248e+08 2.884655e+08 2.944104e+08 2.095728e+08## Variance    3.705505e+15 9.004422e+15 1.339109e+16 3.931891e+15## Stdev       6.087286e+07 9.489163e+07 1.157199e+08 6.270480e+07## Skewness    9.422400e-01 1.203283e+00 1.037015e+00 1.452082e+00## Kurtosis    1.482540e+00 2.064821e+00 6.584810e-01 3.214065e+00##                     2011         2012         2013         2014## nobs        2.520000e+02 2.500000e+02 2.520000e+02 2.520000e+02## NAs         0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00## Minimum     8.410000e+06 4.771000e+07 3.364000e+07 4.287000e+07## Maximum     4.799800e+08 4.296100e+08 4.200800e+08 6.554500e+08## 1. Quartile 1.458775e+08 1.107150e+08 9.488000e+07 7.283000e+07## 3. Quartile 1.932400e+08 1.421775e+08 1.297575e+08 9.928000e+07## Mean        1.804133e+08 1.312606e+08 1.184434e+08 9.288516e+07## Median      1.671250e+08 1.251950e+08 1.109250e+08 8.144500e+07## Sum         4.546415e+10 3.281515e+10 2.984773e+10 2.340706e+10## SE Mean     3.897738e+06 2.796503e+06 2.809128e+06 3.282643e+06## LCL Mean    1.727369e+08 1.257528e+08 1.129109e+08 8.642012e+07## UCL Mean    1.880897e+08 1.367684e+08 1.239758e+08 9.935019e+07## Variance    3.828475e+15 1.955108e+15 1.988583e+15 2.715488e+15## Stdev       6.187468e+07 4.421660e+07 4.459353e+07 5.211034e+07## Skewness    1.878239e+00 3.454971e+00 3.551752e+00 6.619268e+00## Kurtosis    5.631080e+00 1.852581e+01 1.900989e+01 5.856136e+01##                     2015         2016         2017         2018## nobs        2.520000e+02 2.520000e+02 2.510000e+02 2.510000e+02## NAs         0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00## Minimum     4.035000e+07 4.589000e+07 1.186100e+08 1.559400e+08## Maximum     3.445600e+08 5.734700e+08 6.357400e+08 9.005100e+08## 1. Quartile 8.775250e+07 8.224250e+07 2.695850e+08 2.819550e+08## 3. Quartile 1.192150e+08 1.203550e+08 3.389950e+08 4.179200e+08## Mean        1.093957e+08 1.172089e+08 3.112396e+08 3.593710e+08## Median      1.021000e+08 9.410500e+07 2.996700e+08 3.414700e+08## Sum         2.756772e+10 2.953664e+10 7.812114e+10 9.020213e+10## SE Mean     2.433611e+06 4.331290e+06 4.376432e+06 6.984484e+06## LCL Mean    1.046028e+08 1.086786e+08 3.026202e+08 3.456151e+08## UCL Mean    1.141886e+08 1.257392e+08 3.198590e+08 3.731270e+08## Variance    1.492461e+15 4.727538e+15 4.807442e+15 1.224454e+16## Stdev       3.863238e+07 6.875709e+07 6.933572e+07 1.106550e+08## Skewness    3.420032e+00 3.046742e+00 1.478708e+00 1.363823e+00## Kurtosis    1.612326e+01 1.122161e+01 3.848619e+00 3.277164e+00

在下文中,我们对上面显示的一些相关指标进行了评论。

平均值

每日交易量具有正平均值的年份是:

代码语言:javascript
复制
##  \[1\] "2007" "2008" "2009" "2010" "2011" "2012" "2013" "2014" "2015" "2016"## \[11\] "2017" "2018"

所有每日交易量均值按升序排列。

代码语言:javascript
复制
##          2014      2015      2016      2013      2012      2011      2010## Mean 92885159 109395714 117208889 118443373 131260600 180413294 201793373##           2007      2008      2009      2017      2018## Mean 244957450 276716364 280053730 311239602 359371036

中位数

每日交易量中位数为正的年份是:

代码语言:javascript
复制
##  \[1\] "2007" "2008" "2009" "2010" "2011" "2012" "2013" "2014" "2015" "2016"## \[11\] "2017" "2018"

所有每日成交量中值均按升序排列。

代码语言:javascript
复制
##            2014     2016      2015      2013      2012      2011      2010## Median 81445000 94105000 102100000 110925000 125195000 167125000 190505000##             2007      2009      2008      2017      2018## Median 235090000 244320000 256970000 299670000 341470000

偏度

每日交易量出现正偏的年份是:

代码语言:javascript
复制
##  \[1\] "2007" "2008" "2009" "2010" "2011" "2012" "2013" "2014" "2015" "2016"## \[11\] "2017" "2018"

每日交易量偏度值均按升序排列。

代码语言:javascript
复制
##             2007     2009     2008     2018     2010     2017     2011## Skewness 0.94224 1.037015 1.203283 1.363823 1.452082 1.478708 1.878239##              2016     2015     2012     2013     2014## Skewness 3.046742 3.420032 3.454971 3.551752 6.619268

峰度

有正峰度的年份是:

代码语言:javascript
复制
##  \[1\] "2007" "2008" "2009" "2010" "2011" "2012" "2013" "2014" "2015" "2016"## \[11\] "2017" "2018"

按升序排列。

代码语言:javascript
复制
##              2009    2007     2008     2010     2018     2017    2011## Kurtosis 0.658481 1.48254 2.064821 3.214065 3.277164 3.848619 5.63108##              2016     2015     2012     2013     2014## Kurtosis 11.22161 16.12326 18.52581 19.00989 58.56136

箱形图

从2010年开始交易量开始下降,2017年出现了显着增长。2018年的交易量甚至超过了2017年和其他年份。

密度图

shapiro检验

代码语言:javascript
复制
##            result## 2007 6.608332e-09## 2008 3.555102e-10## 2009 1.023147e-10## 2010 9.890576e-13## 2011 2.681476e-16## 2012 1.866544e-20## 2013 6.906596e-21## 2014 5.304227e-27## 2015 2.739912e-21## 2016 6.640215e-23## 2017 4.543843e-12## 2018 9.288371e-11

正态分布的零假设被拒绝。

QQ图

QQplots直观地确认了每日交易量分布的非正态情况。

每日交易量对数比率探索性分析

与对数收益类似,我们可以将交易量对数比率定义为

vt:= ln(Vt/Vt−1) 我们可以通过PerformanceAnalytics包中的CalculateReturns对其进行计算并将其绘制出来。

代码语言:javascript
复制
plot(vol\_log\_ratio)

将交易量对数比率时间序列数据和时间轴索引映射到数据框。

代码语言:javascript
复制
head(dvol_df)##   year        value## 1 2007 -0.233511910## 2 2007 -0.096538449## 3 2007 -0.051109832## 4 2007  0.007533076## 5 2007  0.006109458## 6 2007  0.144221282tail(vol_df)##      year       value## 3014 2018  0.44563907## 3015 2018 -1.07149878## 3016 2018  0.33945998## 3017 2018 -0.05980236## 3018 2018 -0.19249224## 3019 2018 -0.15278959

基本统计摘要

代码语言:javascript
复制
##                   2007       2008       2009       2010       2011## nobs        250.000000 253.000000 252.000000 252.000000 252.000000## NAs           0.000000   0.000000   0.000000   0.000000   0.000000## Minimum      -1.606192  -1.122526  -1.071225  -1.050181  -2.301514## Maximum       0.775961   0.724762   0.881352   1.041216   2.441882## 1. Quartile  -0.123124  -0.128815  -0.162191  -0.170486  -0.157758## 3. Quartile   0.130056   0.145512   0.169233   0.179903   0.137108## Mean         -0.002685   0.001203  -0.001973  -0.001550   0.000140## Median       -0.010972   0.002222  -0.031748  -0.004217  -0.012839## Sum          -0.671142   0.304462  -0.497073  -0.390677   0.035162## SE Mean       0.016984   0.016196   0.017618   0.019318   0.026038## LCL Mean     -0.036135  -0.030693  -0.036670  -0.039596  -0.051141## UCL Mean      0.030766   0.033100   0.032725   0.036495   0.051420## Variance      0.072112   0.066364   0.078219   0.094041   0.170850## Stdev         0.268536   0.257612   0.279677   0.306661   0.413341## Skewness     -0.802037  -0.632586   0.066535  -0.150523   0.407226## Kurtosis      5.345212   2.616615   1.500979   1.353797  14.554642##                   2012       2013       2014       2015       2016## nobs        250.000000 252.000000 252.000000 252.000000 252.000000## NAs           0.000000   0.000000   0.000000   0.000000   0.000000## Minimum      -2.158960  -1.386215  -2.110572  -1.326016  -1.336471## Maximum       1.292956   1.245202   2.008667   1.130289   1.319713## 1. Quartile  -0.152899  -0.145444  -0.144280  -0.143969  -0.134011## 3. Quartile   0.144257   0.149787   0.134198   0.150003   0.141287## Mean          0.001642  -0.002442   0.000200   0.000488   0.004228## Median       -0.000010  -0.004922   0.013460   0.004112  -0.002044## Sum           0.410521  -0.615419   0.050506   0.123080   1.065480## SE Mean       0.021293   0.019799   0.023514   0.019010   0.019089## LCL Mean     -0.040295  -0.041435  -0.046110  -0.036952  -0.033367## UCL Mean      0.043579   0.036551   0.046510   0.037929   0.041823## Variance      0.113345   0.098784   0.139334   0.091071   0.091826## Stdev         0.336667   0.314299   0.373274   0.301780   0.303028## Skewness     -0.878227  -0.297951  -0.209417  -0.285918   0.083826## Kurtosis      8.115847   4.681120   9.850061   4.754926   4.647785##                   2017       2018## nobs        251.000000 251.000000## NAs           0.000000   0.000000## Minimum      -0.817978  -1.071499## Maximum       0.915599   0.926101## 1. Quartile  -0.112190  -0.119086## 3. Quartile   0.110989   0.112424## Mean         -0.000017   0.000257## Median       -0.006322   0.003987## Sum          -0.004238   0.064605## SE Mean       0.013446   0.014180## LCL Mean     -0.026500  -0.027671## UCL Mean      0.026466   0.028185## Variance      0.045383   0.050471## Stdev         0.213032   0.224658## Skewness      0.088511  -0.281007## Kurtosis      3.411036   4.335748

在下文中,我们对一些相关的上述指标进行了具体评论。

平均值

每日交易量对数比率具有正平均值的年份是:

代码语言:javascript
复制
## \[1\] "2008" "2011" "2012" "2014" "2015" "2016" "2018"

所有每日成交量比率的平均值均按升序排列。

代码语言:javascript
复制
##           2007      2013      2009     2010     2017    2011  2014## Mean -0.002685 -0.002442 -0.001973 -0.00155 -1.7e-05 0.00014 2e-04##          2018     2015     2008     2012     2016## Mean 0.000257 0.000488 0.001203 0.001642 0.004228

中位数

每日交易量对数比率具有正中位数的年份是:

代码语言:javascript
复制
## \[1\] "2008" "2014" "2015" "2018"

道琼斯所有每日成交量比率的中位数均按升序排列。

代码语言:javascript
复制
##             2009      2011      2007      2017      2013      2010## Median -0.031748 -0.012839 -0.010972 -0.006322 -0.004922 -0.004217##             2016   2012     2008     2018     2015    2014## Median -0.002044 -1e-05 0.002222 0.003987 0.004112 0.01346

偏度

每日成交量比率具有正偏的年份是:

代码语言:javascript
复制
## \[1\] "2009" "2011" "2016" "2017"

所有每日成交量比率的平均值均按升序排列。

代码语言:javascript
复制
##               2012      2007      2008      2013      2015      2018## Skewness -0.878227 -0.802037 -0.632586 -0.297951 -0.285918 -0.281007##               2014      2010     2009     2016     2017     2011## Skewness -0.209417 -0.150523 0.066535 0.083826 0.088511 0.407226

峰度

有正峰度的年份是:

代码语言:javascript
复制
##  \[1\] "2007" "2008" "2009" "2010" "2011" "2012" "2013" "2014" "2015" "2016"## \[11\] "2017" "2018"

均按升序排列。

代码语言:javascript
复制
##              2010     2009     2008     2017     2018     2016    2013## Kurtosis 1.353797 1.500979 2.616615 3.411036 4.335748 4.647785 4.68112##              2015     2007     2012     2014     2011## Kurtosis 4.754926 5.345212 8.115847 9.850061 14.55464

箱形图

可以在2011、2014和2016年发现正的极端值。在2007、2011、2012、2014年可以发现负的极端值。

密度图

shapiro检验

代码语言:javascript
复制
##            result## 2007 3.695053e-09## 2008 6.160136e-07## 2009 2.083475e-04## 2010 1.500060e-03## 2011 3.434415e-18## 2012 8.417627e-12## 2013 1.165184e-10## 2014 1.954662e-16## 2015 5.261037e-11## 2016 7.144940e-11## 2017 1.551041e-08## 2018 3.069196e-09

基于报告的p值,我们可以拒绝所有正态分布的零假设。

QQ图

在所有报告的年份都可以发现偏离正态状态。

对数收益率GARCH模型

我将为工业平均指数(DJIA)的每日对数收益率建立一个ARMA-GARCH模型。

这是工业平均指数每日对数收益的图。

代码语言:javascript
复制
plot(ret)

离群值检测

Performance Analytics程序包中的Return.clean函数能够清除异常值。在下面,我们将原始时间序列与调整离群值后的进行比较。

代码语言:javascript
复制
clean(ret, "boudt")

作为对波动率评估的更为保守的方法,本文将以原始时间序列进行分析。

相关图

以下是自相关和偏相关图。

代码语言:javascript
复制
acf(ret)
代码语言:javascript
复制
pacf(dj_ret)

上面的相关图表明p和q> 0的一些ARMA(p,q)模型。将在本分析的该范围内对此进行验证。

单位根检验

我们运行Augmented Dickey-Fuller检验。

代码语言:javascript
复制
## ## ############################################### ## # Augmented Dickey-Fuller Test Unit Root Test # ## ############################################### ## ## Test regression none ## ## ## Call:## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)## ## Residuals:##       Min        1Q    Median        3Q       Max ## -0.081477 -0.004141  0.000762  0.005426  0.098777 ## ## Coefficients:##            Estimate Std. Error t value Pr(>|t|)    ## z.lag.1    -1.16233    0.02699 -43.058  < 2e-16 ***## z.diff.lag  0.06325    0.01826   3.464 0.000539 ***## ---## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1## ## Residual standard error: 0.01157 on 2988 degrees of freedom## Multiple R-squared:  0.5484, Adjusted R-squared:  0.5481 ## F-statistic:  1814 on 2 and 2988 DF,  p-value: < 2.2e-16## ## ## Value of test-statistic is: -43.0578 ## ## Critical values for test statistics: ##       1pct  5pct 10pct## tau1 -2.58 -1.95 -1.62

基于报告的检验统计数据与临界值的比较,我们拒绝单位根存在的零假设。

ARMA模型

现在,我们确定时间序列的ARMA结构,以便对结果残差进行ARCH效应检验。ACF和PACF系数拖尾表明存在ARMA(2,2)。我们利用auto.arima()函数开始构建。

代码语言:javascript
复制
## Series: ret ## ARIMA(2,0,4) with zero mean ## ## Coefficients:##          ar1      ar2      ma1     ma2      ma3      ma4##       0.4250  -0.8784  -0.5202  0.8705  -0.0335  -0.0769## s.e.  0.0376   0.0628   0.0412  0.0672   0.0246   0.0203## ## sigma^2 estimated as 0.0001322:  log likelihood=9201.19## AIC=-18388.38   AICc=-18388.34   BIC=-18346.29## ## Training set error measures:##                        ME       RMSE         MAE MPE MAPE      MASE## Training set 0.0002416895 0.01148496 0.007505056 NaN  Inf 0.6687536##                      ACF1## Training set -0.002537238

建议使用ARMA(2,4)模型。但是,ma3系数在统计上并不显着,进一步通过以下方法验证:

代码语言:javascript
复制
## z test of coefficients:## ##      Estimate Std. Error  z value  Pr(>|z|)    ## ar1  0.425015   0.037610  11.3007 < 2.2e-16 ***## ar2 -0.878356   0.062839 -13.9779 < 2.2e-16 ***## ma1 -0.520173   0.041217 -12.6204 < 2.2e-16 ***## ma2  0.870457   0.067211  12.9511 < 2.2e-16 ***## ma3 -0.033527   0.024641  -1.3606 0.1736335    ## ma4 -0.076882   0.020273  -3.7923 0.0001492 ***## ---## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

因此,我们将MA阶q <= 2作为约束。

代码语言:javascript
复制
## Series: dj_ret ## ARIMA(2,0,2) with zero mean ## ## Coefficients:##           ar1      ar2     ma1     ma2##       -0.5143  -0.4364  0.4212  0.3441## s.e.   0.1461   0.1439  0.1512  0.1532## ## sigma^2 estimated as 0.0001325:  log likelihood=9196.33## AIC=-18382.66   AICc=-18382.64   BIC=-18352.6## ## Training set error measures:##                        ME       RMSE         MAE MPE MAPE      MASE## Training set 0.0002287171 0.01150361 0.007501925 Inf  Inf 0.6684746##                      ACF1## Training set -0.002414944

现在,所有系数都具有统计意义。

代码语言:javascript
复制
## z test of coefficients:## ##     Estimate Std. Error z value  Pr(>|z|)    ## ar1 -0.51428    0.14613 -3.5192 0.0004328 ***## ar2 -0.43640    0.14392 -3.0322 0.0024276 ** ## ma1  0.42116    0.15121  2.7853 0.0053485 ** ## ma2  0.34414    0.15323  2.2458 0.0247139 *  ## ---## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

使用ARMA(2,1)和ARMA(1,2)进行的进一步验证得出的AIC值高于ARMA(2,2)。因此,ARMA(2,2)是更可取的。这是结果。

代码语言:javascript
复制
## Series: dj_ret ## ARIMA(2,0,1) with zero mean ## ## Coefficients:##           ar1      ar2     ma1##       -0.4619  -0.1020  0.3646## s.e.   0.1439   0.0204  0.1438## ## sigma^2 estimated as 0.0001327:  log likelihood=9194.1## AIC=-18380.2   AICc=-18380.19   BIC=-18356.15## ## Training set error measures:##                        ME       RMSE         MAE MPE MAPE      MASE## Training set 0.0002370597 0.01151213 0.007522059 Inf  Inf 0.6702687##                      ACF1## Training set 0.0009366271coeftest(auto_model3)## ## z test of coefficients:## ##      Estimate Std. Error z value  Pr(>|z|)    ## ar1 -0.461916   0.143880 -3.2104  0.001325 ** ## ar2 -0.102012   0.020377 -5.0062 5.552e-07 ***## ma1  0.364628   0.143818  2.5353  0.011234 *  ## ---## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

所有系数均具有统计学意义。

代码语言:javascript
复制
## ARIMA(1,0,2) with zero mean ## ## Coefficients:##           ar1     ma1      ma2##       -0.4207  0.3259  -0.0954## s.e.   0.1488  0.1481   0.0198## ## sigma^2 estimated as 0.0001328:  log likelihood=9193.01## AIC=-18378.02   AICc=-18378   BIC=-18353.96## ## Training set error measures:##                        ME      RMSE         MAE MPE MAPE      MASE## Training set 0.0002387398 0.0115163 0.007522913 Inf  Inf 0.6703448##                      ACF1## Training set -0.001958194coeftest(auto_model4)## ## z test of coefficients:## ##      Estimate Std. Error z value  Pr(>|z|)    ## ar1 -0.420678   0.148818 -2.8268  0.004702 ** ## ma1  0.325918   0.148115  2.2004  0.027776 *  ## ma2 -0.095407   0.019848 -4.8070 1.532e-06 ***## ---## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

所有系数均具有统计学意义。此外,我们使用TSA软件包报告中的eacf()函数。

代码语言:javascript
复制
## AR/MA##   0 1 2 3 4 5 6 7 8 9 10 11 12 13## 0 x x x o x o o o o o o  o  o  x ## 1 x x o o x o o o o o o  o  o  o ## 2 x o o x x o o o o o o  o  o  o ## 3 x o x o x o o o o o o  o  o  o ## 4 x x x x x o o o o o o  o  o  o ## 5 x x x x x o o x o o o  o  o  o ## 6 x x x x x x o o o o o  o  o  o ## 7 x x x x x o o o o o o  o  o  o

以“ O”为顶点的左上三角形位于(p,q)= {(1,2 ,,(2,2),(1,3)}}内,它表示一组潜在候选对象(p,q)值。ARMA(1,2)模型已经过验证。ARMA(2,2)已经是候选模型。让我们验证ARMA(1,3)。

代码语言:javascript
复制
## Call:## ## Coefficients:##           ar1     ma1      ma2     ma3##       -0.2057  0.1106  -0.0681  0.0338## s.e.   0.2012  0.2005   0.0263  0.0215## ## sigma^2 estimated as 0.0001325:  log likelihood = 9193.97,  aic = -18379.94coeftest(arima_model5)## ## z test of coefficients:## ##      Estimate Std. Error z value Pr(>|z|)   ## ar1 -0.205742   0.201180 -1.0227 0.306461   ## ma1  0.110599   0.200475  0.5517 0.581167   ## ma2 -0.068124   0.026321 -2.5882 0.009647 **## ma3  0.033832   0.021495  1.5739 0.115501   ## ---## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

只有一个系数具有统计意义。

结论是,我们选择ARMA(2,2)作为均值模型。现在,我们可以继续进行ARCH效果检验。

ARCH效应检验

现在,我们可以检验模型残差上是否存在ARCH效应。如果ARCH效应对于我们的时间序列的残差在统计上显着,则需要GARCH模型。

代码语言:javascript
复制
##  ARCH LM-test; Null hypothesis: no ARCH effects## ## data:  model\_residuals - mean(model\_residuals)## Chi-squared = 986.82, df = 12, p-value < 2.2e-16

基于报告的p值,我们拒绝没有ARCH效应的原假设。

让我们看一下残差相关图。

条件波动率

条件均值和方差定义为:

μt:= E(rt | Ft-1)σt2:= Var(rt | Ft-1)= E [(rt-μt)2 | Ft-1]

条件波动率可以计算为条件方差的平方根。

eGARCH模型

将sGARCH作为方差模型的尝试未获得具有统计显着性系数的结果。而指数GARCH(eGARCH)方差模型能够捕获波动率内的不对称性。要检查DJIA对数收益率内的不对称性,显示汇总统计数据和密度图。

代码语言:javascript
复制
##             DAdjusted## nobs         3019.000000## NAs             0.000000## Minimum        -0.082005## Maximum         0.105083## 1. Quartile    -0.003991## 3. Quartile     0.005232## Mean            0.000207## Median          0.000551## Sum             0.625943## SE Mean         0.000211## LCL Mean       -0.000206## UCL Mean        0.000621## Variance        0.000134## Stdev           0.011593## Skewness       -0.141370## Kurtosis       10.200492

负偏度值确认分布内不对称性的存在。

这给出了密度图。

我们继续提出eGARCH模型作为方差模型(针对条件方差)。更准确地说,我们将使用ARMA(2,2)作为均值模型,指数GARCH(1,1)作为方差模型对ARMA-GARCH进行建模。

在此之前,我们进一步强调ARMA(0,0)在这种情况下不令人满意。ARMA-GARCH:ARMA(0,0)+ eGARCH(1,1)

代码语言:javascript
复制
## ## *---------------------------------*## *          GARCH Model Fit        *## *---------------------------------*## ## Conditional Variance Dynamics    ## -----------------------------------## GARCH Model  : eGARCH(1,1)## Mean Model   : ARFIMA(0,0,0)## Distribution : sstd ## ## Optimal Parameters## ------------------------------------##         Estimate  Std. Error  t value Pr(>|t|)## mu      0.000303    0.000117   2.5933 0.009506## omega  -0.291302    0.016580 -17.5699 0.000000## alpha1 -0.174456    0.013913 -12.5387 0.000000## beta1   0.969255    0.001770 547.6539 0.000000## gamma1  0.188918    0.021771   8.6773 0.000000## skew    0.870191    0.021763  39.9848 0.000000## shape   6.118380    0.750114   8.1566 0.000000## ## Robust Standard Errors:##         Estimate  Std. Error  t value Pr(>|t|)## mu      0.000303    0.000130   2.3253 0.020055## omega  -0.291302    0.014819 -19.6569 0.000000## alpha1 -0.174456    0.016852 -10.3524 0.000000## beta1   0.969255    0.001629 595.0143 0.000000## gamma1  0.188918    0.031453   6.0063 0.000000## skew    0.870191    0.022733  38.2783 0.000000## shape   6.118380    0.834724   7.3298 0.000000## ## LogLikelihood : 10138.63 ## ## Information Criteria## ------------------------------------##                     ## Akaike       -6.7119## Bayes        -6.6980## Shibata      -6.7119## Hannan-Quinn -6.7069## ## Weighted Ljung-Box Test on Standardized Residuals## ------------------------------------##                         statistic p-value## Lag\[1\]                      5.475 0.01929## Lag\[2*(p+q)+(p+q)-1\]\[2\]     6.011 0.02185## Lag\[4*(p+q)+(p+q)-1\]\[5\]     7.712 0.03472## d.o.f=0## H0 : No serial correlation## ## Weighted Ljung-Box Test on Standardized Squared Residuals## ------------------------------------##                         statistic p-value## Lag\[1\]                      1.342  0.2467## Lag\[2*(p+q)+(p+q)-1\]\[5\]     2.325  0.5438## Lag\[4*(p+q)+(p+q)-1\]\[9\]     2.971  0.7638## d.o.f=2## ## Weighted ARCH LM Tests## ------------------------------------##             Statistic Shape Scale P-Value## ARCH Lag\[3\]    0.3229 0.500 2.000  0.5699## ARCH Lag\[5\]    1.4809 1.440 1.667  0.5973## ARCH Lag\[7\]    1.6994 2.315 1.543  0.7806## ## Nyblom stability test## ------------------------------------## Joint Statistic:  4.0468## Individual Statistics:             ## mu     0.2156## omega  1.0830## alpha1 0.5748## beta1  0.8663## gamma1 0.3994## skew   0.1044## shape  0.4940## ## Asymptotic Critical Values (10% 5% 1%)## Joint Statistic:          1.69 1.9 2.35## Individual Statistic:     0.35 0.47 0.75## ## Sign Bias Test## ------------------------------------##                    t-value    prob sig## Sign Bias            1.183 0.23680    ## Negative Sign Bias   2.180 0.02932  **## Positive Sign Bias   1.554 0.12022    ## Joint Effect         8.498 0.03677  **## ## ## Adjusted Pearson Goodness-of-Fit Test:## ------------------------------------##   group statistic p-value(g-1)## 1    20     37.24      0.00741## 2    30     42.92      0.04633## 3    40     52.86      0.06831## 4    50     65.55      0.05714## ## ## Elapsed time : 0.6527421

所有系数均具有统计学意义。但是,根据以上报告的p值的标准化残差加权Ljung-Box检验,我们确认该模型无法捕获所有ARCH效果(我们拒绝了残差内无相关性的零假设) )。

作为结论,我们通过在下面所示的GARCH拟合中指定ARMA(2,2)作为均值模型来继续进行。

ARMA-GARCH:ARMA(2,2)+ eGARCH(1,1)

代码语言:javascript
复制
## ## *---------------------------------*## *          GARCH Model Fit        *## *---------------------------------*## ## Conditional Variance Dynamics    ## -----------------------------------## GARCH Model  : eGARCH(1,1)## Mean Model   : ARFIMA(2,0,2)## Distribution : sstd ## ## Optimal Parameters## ------------------------------------##         Estimate  Std. Error    t value Pr(>|t|)## ar1     -0.47642    0.026115   -18.2433        0## ar2     -0.57465    0.052469   -10.9523        0## ma1      0.42945    0.025846    16.6157        0## ma2      0.56258    0.054060    10.4066        0## omega   -0.31340    0.003497   -89.6286        0## alpha1  -0.17372    0.011642   -14.9222        0## beta1    0.96598    0.000027 35240.1590        0## gamma1   0.18937    0.011893    15.9222        0## skew     0.84959    0.020063    42.3469        0## shape    5.99161    0.701313     8.5434        0## ## Robust Standard Errors:##         Estimate  Std. Error    t value Pr(>|t|)## ar1     -0.47642    0.007708   -61.8064        0## ar2     -0.57465    0.018561   -30.9608        0## ma1      0.42945    0.007927    54.1760        0## ma2      0.56258    0.017799    31.6074        0## omega   -0.31340    0.003263   -96.0543        0## alpha1  -0.17372    0.012630   -13.7547        0## beta1    0.96598    0.000036 26838.0412        0## gamma1   0.18937    0.013003    14.5631        0## skew     0.84959    0.020089    42.2911        0## shape    5.99161    0.707324     8.4708        0## ## LogLikelihood : 10140.27 ## ## Information Criteria## ------------------------------------##                     ## Akaike       -6.7110## Bayes        -6.6911## Shibata      -6.7110## Hannan-Quinn -6.7039## ## Weighted Ljung-Box Test on Standardized Residuals## ------------------------------------##                          statistic p-value## Lag\[1\]                     0.03028  0.8619## Lag\[2*(p+q)+(p+q)-1\]\[11\]   5.69916  0.6822## Lag\[4*(p+q)+(p+q)-1\]\[19\]  12.14955  0.1782## d.o.f=4## H0 : No serial correlation## ## Weighted Ljung-Box Test on Standardized Squared Residuals## ------------------------------------##                         statistic p-value## Lag\[1\]                      1.666  0.1967## Lag\[2*(p+q)+(p+q)-1\]\[5\]     2.815  0.4418## Lag\[4*(p+q)+(p+q)-1\]\[9\]     3.457  0.6818## d.o.f=2## ## Weighted ARCH LM Tests## ------------------------------------##             Statistic Shape Scale P-Value## ARCH Lag\[3\]    0.1796 0.500 2.000  0.6717## ARCH Lag\[5\]    1.5392 1.440 1.667  0.5821## ARCH Lag\[7\]    1.6381 2.315 1.543  0.7933## ## Nyblom stability test## ------------------------------------## Joint Statistic:  4.4743## Individual Statistics:              ## ar1    0.07045## ar2    0.37070## ma1    0.07702## ma2    0.39283## omega  1.00123## alpha1 0.49520## beta1  0.79702## gamma1 0.51601## skew   0.07163## shape  0.55625## ## Asymptotic Critical Values (10% 5% 1%)## Joint Statistic:          2.29 2.54 3.05## Individual Statistic:     0.35 0.47 0.75## ## Sign Bias Test## ------------------------------------##                    t-value    prob sig## Sign Bias           0.4723 0.63677    ## Negative Sign Bias  1.7969 0.07246   *## Positive Sign Bias  2.0114 0.04438  **## Joint Effect        7.7269 0.05201   *## ## ## Adjusted Pearson Goodness-of-Fit Test:## ------------------------------------##   group statistic p-value(g-1)## 1    20     46.18    0.0004673## 2    30     47.73    0.0156837## 3    40     67.07    0.0034331## 4    50     65.51    0.0574582## ## ## Elapsed time : 0.93679

所有系数均具有统计学意义。在标准化残差或标准化平方残差内未发现相关性。模型正确捕获所有ARCH效果。然而:

*对于某些模型参数,Nyblom稳定性检验无效假设认为模型参数随时间是恒定的

*正偏差为零的假设在5%的显着性水平上被拒绝;这种检验着重于正面冲击的影响

*拒绝了标准化残差的经验和理论分布相同的Pearson拟合优度检验原假设

_注意_:ARMA(1,2)+ eGARCH(1,1)拟合还提供统计上显着的系数,标准化残差内没有相关性,标准化平方残差内没有相关性,并且正确捕获了所有ARCH效应。但是,偏差检验在5%时不如ARMA(2,2)+ eGARCH(1,1)模型令人满意。

进一步显示诊断图。

我们用平均模型拟合(红线)和条件波动率(蓝线)显示了原始的对数收益时间序列。

代码语言:javascript
复制
p <- addSeries(mean\_model\_fit, col = 'red', on = 1)p <- addSeries(cond_volatility, col = 'blue', on = 1)p

模型方程式

结合ARMA(2,2)和eGARCH模型,我们可以:

yt − ϕ1yt−1 − ϕ2yt−2 = ϕ0 + ut + θ1ut−1 +θ2ut-2ut= σtϵt,ϵt = N(0,1)ln⁡(σt2)=ω+ ∑j = 1q(αjϵt−j2 +γ (ϵt−j–E | ϵt−j |))+ ∑i =1pβiln(σt−12)

使用模型结果系数,结果如下。

yt +0.476 yt-1 +0.575 yt-2 = ut +0.429 ut-1 +0.563 ut-2ut = σtϵt,ϵt = N(0,1)ln⁡(σt2)= -0.313 -0.174ϵt-12 +0.189( ϵt−1–E | ϵt−1 |))+ 0.966 ln(σt−12)

波动率分析

这是由ARMA(2,2)+ eGARCH(1,1)模型得出的条件波动图。

代码语言:javascript
复制
plot(cond_volatility)

显示了年条件波动率的线线图。

代码语言:javascript
复制
pl <- lapply(2007:2018, function(x) { plot(cond_volatility\[as.character(x)\])pl

显示了按年列出的条件波动率箱图。

2008年之后,日波动率基本趋于下降。在2017年,波动率低于其他任何年。不同的是,与2017年相比,我们在2018年的波动性显着增加。


本文选自《R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析》。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 全文下载链接:http://tecdat.cn/?p=19469
    • 为此,本文按以下内容划分:
      • 获取数据
        • 辅助函数
          • 每日对数收益率探索性分析
            • 基本统计摘要
            • 平均值
            • 中位数
            • 偏度
          • 峰度
            • 箱形图
            • 密度图
            • 平均值
            • 中位数
            • 偏度
            • 峰度
            • 密度图
            • shapiro检验
        • shapiro检验
        • 每周对数收益率探索性分析
        • 基本统计摘要
        • 箱形图
        • QQ图
        • 交易量探索性分析
        • 获取数据
          • 每日量探索性分析
            • 基本统计摘要
            • 平均值
            • 中位数
            • 偏度
            • 峰度
            • 箱形图
            • 密度图
            • shapiro检验
            • QQ图
          • 每日交易量对数比率探索性分析
            • 基本统计摘要
            • 平均值
            • 中位数
            • 偏度
            • 峰度
            • 箱形图
            • 密度图
            • shapiro检验
            • QQ图
        • 对数收益率GARCH模型
          • 离群值检测
            • 相关图
              • 单位根检验
                • ARMA模型
                  • ARCH效应检验
                  • 条件波动率
                  • eGARCH模型
                  • 模型方程式
                    • 波动率分析
                    领券
                    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档