前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >2021数模国赛C题——代码纯享版 – 学金融的文史哲小生

2021数模国赛C题——代码纯享版 – 学金融的文史哲小生

作者头像
去海边整点薯条
发布2022-11-01 14:17:56
7590
发布2022-11-01 14:17:56
举报
文章被收录于专栏:数模计量

一、ACF(自相关系数检验周期)

代码语言:javascript
复制
%% 通过autocorr和xcorr自相关求周期
clear ;clc
%加载TOP13家供货商240周的供货量数组文件
load FFt.mat;
%使用autocorr函数
Randi = randi([2 14],1,1)
A = FFt([1:96],Randi) ;
len = length(A) ;
[ACF,lags,bounds] = autocorr(A,len-1) ;
subplot(2,1,1) ;
plot(lags(1:end),ACF(1:end)) ;
title('autocorr求S-top13的自相关') ;
%使用xcorr函数
B = A - mean(A) ;%减掉均值
[c,lags] = xcorr(B) ;
d = c ./ c(len) ;%归一化
subplot(2,1,2) ;
plot(lags(len:end),d(len:end)) ;%取中点n为起始的后面n个序列
title('xcorr求S-top13的自相关') ;
代码语言:javascript
复制
from statsmodels.tsa.stattools import acf

# Expected time period
for lag in fft_periods:
    # lag = fft_periods[np.abs(fft_periods - time_lag).argmin()]
    acf_score = acf(data["value"].values, nlags=lag)[-1]
    print(f"lag: {lag} fft acf: {acf_score}")

expected_lags = np.array([timedelta(hours=12)/timedelta(minutes=5), timedelta(days=1)/timedelta(minutes=5), timedelta(days=7)/timedelta(minutes=5)]).astype(int)
for lag in expected_lags:
    acf_score = acf(data["value"].values, nlags=lag, fft=False)[-1]
    print(f"lag: {lag} expected acf: {acf_score}")

周期检验图

1.autocorr求S-top13的自相关
2.corr求S-top13的自相关

二、FFt(傅里叶变换计算周期)

代码语言:javascript
复制
%% 判断TOP13家供货商的供货量(S)是否为周期波动。如果周期波动,求出周期。
clear;clc;
%加载TOP13家供货商240周的供货量数组文件
load FFt.mat;
%将首列的240个周次作为横坐标(Weeks)
weeks = FFt([1:240],1);
%随机生成2到14中的一个整数用以随机择取13个供货商中的一家
Randi = randi([2 14],1,1)
SNumbers = FFt([1:240],Randi);
%绘制该供货商未经fft(傅里叶函数)变换的原始图像并观察是否存在周期此性
plot(weeks,SNumbers)
xlabel('Weeks')
ylabel('SNumbers')
title('FFt Data')
%大致判断该原始图像是否具有周期性
judge = input("请输入观察该供货商的供货量(S)数据是否具有周期性,'是'请输入'1','不是'请输入'0':")
if judge == 1
    %如果具有周期性,则使用FFt(傅里叶变换)函数将随机择取的供货商所在列的供货量(S)进行变换
    y = fft(SNumbers);
    y(1) = [];
    plot(y,'ro')
    %绘制经过fft(傅里叶函数)变换后的图像
    xlabel('real_SNumbers(y)')
    ylabel('imag_SNumbers(y)')
    title('傅里叶转换')
    %变换数据前半部分的幂
    n = length(y);
    power = abs(y(1:floor(n/2))).^2;
    %最大频率
    maxfreq = 1/2;      
    %等距频率网格
    freq = (1:n/2)/(n/2)*maxfreq;    
    plot(freq,power)
    xlabel('Weeks/Cycle')
    ylabel('Power')
    period = 1./freq;
    plot(period,power);
    %放大最大功率(周次)
    xlim([0 240]); 
    xlabel('Weeks/Cycle')
    ylabel('SNumbers')
end

随机验证周期图

1.Weeks
2.Weeks_Cycle

三、Topsis

(一)Inter2Max

代码语言:javascript
复制
%% 定义Inter2Max函数以备主函数调用
function [posit_x] = Inter2Max(x,a,b)
    r_x = size(x,1);  % row of x 
    M = max([a-min(x),max(x)-b]);
    posit_x = zeros(r_x,1);  
    % 初始化posit_x全为0
    for i = 1: r_x
        if x(i) < a
           posit_x(i) = 1-(a-x(i))/M;
        elseif x(i) > b
           posit_x(i) = 1-(x(i)-b)/M;
        else
           posit_x(i) = 1;
        end
    end
end

(二)Mid2Max

代码语言:javascript
复制
%% 中间型数据转极大型数据
%定义Mid2Max函数以备主函数调用
function [posit_x] = Mid2Max(x,best)
    M = max(abs(x-best));
    posit_x = 1 - abs(x-best) / M;
end```
%% 中间型数据转极大型数据
%定义Mid2Max函数以备主函数调用
function [posit_x] = Mid2Max(x,best)
    M = max(abs(x-best));
    posit_x = 1 - abs(x-best) / M;
end

(三)Min2Max

代码语言:javascript
复制
%% 及小型数据转极大型数据
%定义Min2Max函数以备主函数调用
function [posit_x] = Min2Max(x)
    posit_x = max(x) - x;
    % posit_x = 1 / x; 如果x全部都大于0,需要这样正向化
end

(四)Positivization

代码语言:javascript
复制
%% 调用Mid2Max.m和Min2Max.m和Inter2Max.m函数定义正向化函数
function [posit_x] = Positivization(x,type,i)
% 输入变量有三个:
% x:需要正向化处理的指标对应的原始列向量
% type: 指标的类型(1:极小型, 2:中间型, 3:区间型)
% i: 正在处理的是原始矩阵中的哪一列
% 输出变量posit_x表示:正向化后的列向量
    if type == 1  %极小型
        disp(['第' num2str(i) '列是极小型,正在正向化'] )
        posit_x = Min2Max(x);  %调用Min2Max函数来正向化
        disp(['第' num2str(i) '列极小型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    elseif type == 2  %中间型
        disp(['第' num2str(i) '列是中间型'] )
        best = input('请输入最佳的那一个值: ');
        posit_x = Mid2Max(x,best);
        disp(['第' num2str(i) '列中间型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    elseif type == 3  %区间型
        disp(['第' num2str(i) '列是区间型'] )
        a = input('请输入区间的下界: ');
        b = input('请输入区间的上界: '); 
        posit_x = Inter2Max(x,a,b);
        disp(['第' num2str(i) '列区间型正向化处理完成'] )
        disp('~~~~~~~~~~~~~~~~~~~~分界线~~~~~~~~~~~~~~~~~~~~')
    else
        disp('没有这种类型的指标,请检查Type向量中是否有除了1、2、3之外的其他值')
    end
end

(五)topsis

代码语言:javascript
复制
%% Step1:清空界面,并加载矩阵X
clear;clc %清空界面
load X.mat %加载数据
%% Step2:判断是否需要正向化处理
[n,m] = size(X);%计算矩阵的大小
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标']) %输出共有多少个评价对象
JUDGING = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0:  ']);%定义是否需要正向化处理
if JUDGING == 1
    Position = input('请输入需要正向化处理的指标所在的列 '); 
    disp('请输入需要处理的这些列的指标类型(1-极小型, 2-中间型, 3-区间型) ')
    TYPE = input('例如:第1列是极小型,第2列是中间型,第3列是区间型,就输入[1,2,3]:  ');%同样为了保证代码逻辑的完整性,此处添加正向化的处理步骤
      for i = 1 : size(Position,2)  %这里需要对这些列分别处理,因此需要知道一共要处理的次数,即循环的次数
        X(:,Position(i)) = Positivization(X(:,Position(i)),TYPE(i),Position(i));
       end
    disp('正向化后的矩阵 X =  ')%输出正向化的矩阵
    disp(X)
end%以end作为结尾
%% Step3:对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);%利用repmat函数
disp('标准化矩阵 Z = ')%输出标准化矩阵Z
disp(Z)
%% Step4:判断是否需要增加权重
disp("请输入是否需要增加权重向量,需要输入1,不需要输入0")%以此作为增加权重步骤的开始
JUDGING = input('请输入是否需要增加权重: ');%判断是否需要增加权重
if JUDGING == 1%用if 和 for 循环来判断是否需要增加权重
    JUDGING = input('使用熵权法确定权重请输入1,否则输入0: ');%确定是否需要用熵权法增加权重
    if JUDGING == 1%==是判断符号
        if sum(sum(Z<0)) >0   % 如果之前标准化后的Z矩阵中存在负数,则重新对X进行标准化
            disp('原来标准化得到的Z矩阵中存在负数,所以需要对X重新标准化')
            for i = 1:n%使用for循环
                for j = 1:m
                    Z(i,j) = [X(i,j) - min(X(:,j))] / [max(X(:,j)) - min(X(:,j))];
                end
            end
            disp('X重新进行标准化得到的标准化矩阵Z为:  ')
            disp(Z)
        end
        weight = Entropy_Method(Z);
        disp('熵权法确定的权重为:')%输出最终权重数据
        disp(weight)
    else
        disp(['如果你有3个指标,你就需要输入3个权重,例如它们分别为0.25,0.25,0.5, 则你需要输入[0.25,0.25,0.5]']);
        weight = input(['你需要输入' num2str(m) '个权数。' '请以行向量的形式输入这' num2str(m) '个权重: ']);
        OK = 0;  % 用来判断用户的输入格式是否正确
        while OK == 0 
            if abs(sum(weight) -1)<0.000001 && size(weight,1) == 1 && size(weight,2) == m  % 注意,Matlab中浮点数的比较要小心
                OK =1;
            else
                weight = input('你输入的有误,请重新输入权重行向量: ');
            end
        end
    end
else
    weight = ones(1,m) ./ m ; %如果不需要加权重就默认权重都相同,即都为1/m
end

%% Step5:计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ] .* repmat(weight,n,1) ,2) .^ 0.5;   %此为与最大值即最优解的距离
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ] .* repmat(weight,n,1) ,2) .^ 0.5;   %此为与最小值即最劣解的距离
S = D_N ./ (D_P+D_N);    % 这里得到未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)%将数据进行归一化处理,以便于比较。
[sorted_S,index] = sort(stand_S ,'descend')%对各个供应商进行排序,得到最终数据
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-01-03 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、ACF(自相关系数检验周期)
    • 周期检验图
      • 1.autocorr求S-top13的自相关
      • 2.corr求S-top13的自相关
  • 二、FFt(傅里叶变换计算周期)
    • 随机验证周期图
      • 1.Weeks
      • 2.Weeks_Cycle
  • 三、Topsis
    • (一)Inter2Max
      • (二)Mid2Max
        • (三)Min2Max
          • (四)Positivization
            • (五)topsis
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档