题目368
设
f(x) 为连续函数,
\lim\limits_{x\to0}\dfrac{xf(x) - \ln(1 + x)}{x^2} = 2.
F(x) = \displaystyle\int_0^x tf(x-t)dt,当
x\to0 时,
F(x) - \dfrac{1}{2}x^2 与
bx^k 为等价无穷小
其中常数
b \ne 0,
k 为某正整数,求
k, b, f(0), f'(0)解答
先用等式脱帽法,把
f(x) 表达式写出来:
[
\dfrac{xf(x)-\ln(1+x)}{x^2} = 2 + o(1) \quad\Rightarrow\quad f(x) = 2x + \dfrac{\ln(1 + x)}{x} + o(x)
]又
\ln(1 + x) = x - \dfrac{1}{2}x^2 + o(x^2),故
f(x) = 1 + \dfrac{3}{2}x + o(x)又
F(x) = \displaystyle x\int_0^xf(u) du - \int_0^x uf(u)du\displaystyle \int_0^x f(u)du = x + \dfrac{3}{4}x^2 + o(x^2),
\displaystyle \int_0^x uf(u)du = \dfrac{1}{2}x^2 + \dfrac{1}{2}x^3 + o(x^3)F(x) = \dfrac{1}{2}x^2 + \dfrac{1}{4}x^3 + o(x^3),由于
F(x) - \dfrac{1}{2}x^2 与
bx^k 为等价无穷小
因此
bx^k \sim \dfrac{1}{4}x^3,易得:
b = \dfrac{1}{4}, k = 3f(0) = 1f'(0) = \lim\limits_{x\to0}\dfrac{1 + \dfrac{3}{2}x + o(x) - 1}{x} = \dfrac{3}{2}题目369
设
f(x) = \lim\limits_{n\to\infty}\dfrac{2e^{(n+1)x} + 1}{e^{nx}+x^n+1},求
f(x) 的间断点
解答
严选题 P3 No.18
常用极限结论:
\lim\limits_{n\to\infty} e^{nx} = \begin{cases} \infty & x > 0 \\\\ 1 & x = 0\\\\ 0 & x < 0 \end{cases},以及
\lim\limits_{n\to\infty} x^n = \begin{cases} \infty & |x| > 1 \\\\ 0 & |x| < 1 \\\\ 1 & x = 1\\\\ \not\exists & x = -1 \end{cases},还有常用不等式:
e^x - 1 > xx > 0 时:
f(x) = \lim\limits_{n\to\infty}\dfrac{2e^{x} + \dfrac{1}{e^{nx}}}{1+(\dfrac{x}{e^x})^n+\dfrac{1}{e^{nx}}} = 2e^xx = 0 时:
f(x) = \dfrac{3}{2}-1 < x < 0 时:
f(x) = 1x < -1 时:
f(x) = \lim\limits_{n\to\infty} \dfrac{1}{x^n + 1} = 0故
f(x) = \begin{cases} 0 & x < -1 \\\\ 1 & -1 < x < 0 \\\\ \dfrac{3}{2} & x = 0 \\\\ 2e^x & x > 0 \end{cases}故有两个跳跃间断点
x = -1, x = 0题目370
下列命题成立的是( )
(A)若
\lim\limits_{x\to0}\varphi(x)=0,且
\lim\limits_{x\to0}\dfrac{f[\varphi(x)] - f(0)}{\varphi(x)} 存在,则
f(x) 在
x=0 处可导
(B)若
f(x) 在
x=0 处可导,且
\lim\limits_{x \to 0}\varphi(x) = 0,则
\lim\limits_{x\to0}\dfrac{f[\varphi(x)]-f(0)}{\varphi(x)} = f'(0)(C)若
\lim\limits_{x\to0}\dfrac{f(\sin x) - f(0)}{\sqrt{x^2}} 存在,则
f(x) 在
x=0 处可导
(D)若
\lim\limits_{x\to0}\dfrac{f(\sqrt[3]{x})-f(0)}{\sqrt{x^2}} 存在,则
f(x) 在
x=0 处可导
解答
(A)选项 显然错误,反例:
\varphi(x) = x^2 只能说明存在右导数
(B)选项 显然错误,反例:
\varphi(x) \equiv 0,等式不成立
(C)选项 先凑导数定义看看:
[
\lim\limits_{x\to0}\dfrac{f(\sin x) - f(0)}{\sqrt{x^2}} =
\lim\limits_{x\to0}\dfrac{f(\sin x) - f(0)}{\sin x} \cdot \dfrac{\sin x}{|x|} =
\lim\limits_{x\to0}\dfrac{f(\sin x) - f(0)}{\sin x} \cdot \dfrac{x}{|x|}
]\lim\limits_{x\to0}\dfrac{x}{|x|} 有界,不一定要用
0 去抵消,可以考虑反向构造一个可以抵消正负号的极限即可
欲使极限存在,且导数定义的极限不存在,构造反例:
f_{+}'(0)=1, f_{-}'(0)=-1有
\lim\limits_{x\to0}\dfrac{f(\sin x) - f(0)}{\sin x} \cdot \dfrac{x}{|x|} = 1 极限存在,且导数不存在
(D)选项 先凑导数定义看看:
[
\lim\limits_{x\to0}\dfrac{f(\sqrt[3]{x})-f(0)}{\sqrt{x^2}} =
\lim\limits_{x\to0}\dfrac{f(\sqrt[3]{x})-f(0)}{\sqrt[3]{x}} \cdot \dfrac{\sqrt[3]{x}}{|x|}
]显然
\lim\limits_{x\to0}\dfrac{\sqrt[3]{x}}{|x|} 无界振荡,欲使极限存在,则必然有:
\lim\limits_{x\to0}\dfrac{f(\sqrt[3]{x})-f(0)}{\sqrt[3]{x}} = 0,即
f'(0) = 0因此答案选择
(\mathbf{D}) 选项
题目371
设
f(x) 在
x_0 点可导,
\alpha_n,\beta_n 为趋于零的正向数列,求极限
[
\lim_{n\to\infty}\dfrac{f(x_0+\alpha_n) - f(x_0-\beta_n)}{\alpha_n + \beta_n}
]解答
考虑写出在
f(x) 在
x_0 点的可微定义式:
f(x_0 + \alpha_n) - f(x_0) = f'(x_0)\alpha_n + o(\alpha_n)f(x_0 - \beta_n) - f(x_0) = -f'(x_0)\beta_n + o(\beta_n)[
\begin{aligned}
&
\lim_{n\to\infty}\dfrac{f(x_0+\alpha_n) - f(x_0-\beta_n)}{\alpha_n + \beta_n}
\\\\
=&
\lim\limits_{n\to\infty}\dfrac{f(x_0)+f'(x_0)\alpha_n + o(\alpha_n) -
f(x_0)+f'(x_0)\beta_n + o(\beta_n)}{\alpha_n + \beta_n}
\\\\
=&
f'(x_0) +
\lim\limits_{n\to\infty}\dfrac{o(\alpha_n)+ o(\beta_n)}{\alpha_n + \beta_n}
\\\\
=&
f'(x_0)
\end{aligned}
]题目372
设函数
\varphi(x) = \displaystyle\int_0^{\sin x}f(tx^2)dt,其中
f(x) 是连续函数,且
f(0) = 2(1)求
\varphi'(x)(2)讨论
\varphi'(x) 的连续性
解答
当
x = 0 时:
\varphi(0) = 0当
x \ne 0 时:先对被积函数换元:令
tx^2 = u,有
\varphi(x) = \dfrac{1}{x^2}\displaystyle\int_0^{x^2\sin x} f(u)du于是有:
\varphi(x) = \begin{cases} \dfrac{1}{x^2}\displaystyle\int_0^{x^2\sin x} f(u)du &,x\ne0 \\\\ 0 &,x=0 \end{cases}然后直接求导即可:
\varphi'(x) = \dfrac{(2\sin x + x\cos x) f(x^2\sin x) x^2 - 2\displaystyle\int_0^{x^2\sin x}f(u)du}{x^3}x=0 点用导数定义:
[
\begin{aligned}
\varphi'(0) = \lim_{x\to0}\dfrac{\displaystyle\int_0^{x^2\sin x} f(u)du}{x^3} =
\lim_{x\to0}\dfrac{\displaystyle\int_0^{x^3} f(u)du}{x^3} =
\lim_{\xi\to0}f(\xi) = 2
\end{aligned}
]综上:
\varphi'(x) = \begin{cases} \dfrac{(2\sin x + x\cos x) f(x^2\sin x) x^2 - 2\displaystyle\int_0^{x^2\sin x}f(u)du}{x^3} &,x\ne0 \\\\ 2&,x=0 \end{cases}讨论
x=0 处的连续性
[
\begin{aligned}
\lim_{x\to0}\varphi(x) &=
\lim_{x\to0}\dfrac{(2\sin x + x\cos x) f(x^2\sin x) x^2 - 2\displaystyle\int_0^{x^2\sin x}f(u)du}{x^3}
\\\\
&=
\lim_{x\to0}\dfrac{(2\sin x + x\cos x) f(x^2\sin x) x^2}{x^3} -
2\lim_{x\to0}\dfrac{\displaystyle\int_0^{x^2\sin x}f(u)du}{x^3}
\\\\
&=
3f(0) - 2f(0)
\\\\
&= 2
\end{aligned}
]由
\lim\limits_{x\to0}\varphi'(x) = \varphi(0),故
\varphi'(x) 在
x = 0 处连续
因此
\varphi'(x) 在
\mathbf{R} 上连续
题目373
设
x = \displaystyle\int_0^1 e^{tu^2}du, y = y(t) 由方程
t - \displaystyle\int_1^{y+t}e^{-u^2}du=0 所确定,求
y'_{t}(0), y''_t(0), x'_t(0), x''_t(0)
y'_x(0), y''_x(0)解答
隐函数问题,先确定初值:
y|_{t=0} = 1,然后方程两侧关于
t 求导:
[
1 - (y'+1) e^{-(y+t)^2} = 0 \quad\Rightarrow\quad y'= e^{(y+t)^2} - 1
]代入可得:
y'|_{t=0}= e-1,再求一次导:
[
y'' = 2e^{(y+t)^2} \cdot (y+t) \cdot (y' + 1)
]代入可得:
y''|_{t=0} = 2e^2对于
x 的方程很难直接求导,需要换元分段,不妨试试求解高阶导数的方法之一:泰勒展开
[
x = \displaystyle\int_0^1 tu^2 + \dfrac{1}{2}t^2u^4 + o(t^2u^4) du = \dfrac{1}{3}t + \dfrac{1}{10}t^2 + o(t^2)
]于是有
x'(0) = \dfrac{1}{3},
x''(0) = \dfrac{1}{5}第二问直接用公式即可:
\dfrac{d^2y}{dx^2} = \dfrac{y''x'-y'x''}{x'^3}\dfrac{dy}{dx} = \dfrac{e-1}{1/3} = 3e-3,
\dfrac{d^2y}{dx^2} = 27 \cdot (\dfrac{2}{3}e^2 - \dfrac{1}{5}(e-1)) = 18e^2 - \dfrac{27}{5}(e-1)题目374
设 \(f(x) = \begin{cases} \dfrac{x-\sin x}{x^3} &,x\ne0\\\\ a&,x=0 \end{cases}\) 处处连续,则
解答
求一点处的高阶导数,可以用泰勒展开或洛必达
本题不妨把
f(x) 在
x=0 处泰勒展开:
[
f(x) = \dfrac{1}{6} - \dfrac{1}{120}x^2 + o(x^2)
]故
a = f(0) = \dfrac{1}{6}, f'(0) = 0, f''(0) = -\dfrac{1}{60}题目375
设有方程
a^x = bx (a>1),则下列结论不正确的是
(A)当
b < 0 时原方程有唯一实根
(B)当
0 < b < 2\ln a 时原方程无实根
(C)当
b = 3\ln a 时原方程有唯一实根
(D)当
b > 3\ln a 时原方程有两实根
解答
令
F(x) = a^x - bx,于是原方程有根问题,就化归到函数
F(x) 有零点问题
求导找单调性:
F'(x) = \ln a \cdot a^x - b, F''(x) = \ln^2 a \cdot a^x由于
a > 1,故
\ln a > 0\quad\Rightarrow\quadF''(x) > 0故
F'(x) 单调递增,又
F'(-\infty) = -b,
F'(+\infty) = +\infty(1)若
-b < 0,即
b > 0,则可由推广的零点定理可得:
F'(x) 存在唯一零点
则可知
F(x) 先单调递减,后单调递增,令
F'(x) = 0,易得极小值点:
x = \dfrac{\ln \dfrac{b}{\ln a}}{\ln a}由于该极值点为唯一极值点,根据已知结论可知,其为区间上的最小值点
令
F(x) < 0,有
b > e\ln a,方程有两个零点;反之
0 < b < e\ln a 时,方程无零点
b = e\ln a 时,函数有唯一零点
(2)若
-b > 0,即
b < 0,则
F'(x) > 0,即
F(x) 单调递增
又
F(-\infty) = - \infty < 0, F(+\infty) = +\infty > 0,由零点定理,有唯一零点
综上,经过函数性态分析可得,错误结论为:
\mathbf{C}题目376
设
f(x) 是可微函数,当
0 < a < x < b 时,恒有
xf'(x) < 2f(x),则
(A)
a^2f(x) > x^2f(a)(B)
b^2f(x) > x^2f(b)(C)
xf(x) < bf(b)(D)
xf(x) > af(a)解答
屑题,构造函数求导找单调性即可
A/B 选项:令
F(x) = \dfrac{f(x)}{x^2},则
F'(x) = \dfrac{f'(x)x - 2f(x)}{x^3}又
x > 0 &
xf'(x) < 2f(x),故
F'(x) < 0\quad\Rightarrow\quadF(x) 单调递减
于是有
F(a) > F(x) > F(b),故
x^2f(a) > a^2f(x),
b^2f(x) > x^2f(b)故正确选项为
\mathbf{B}题目377
设
f(x) 二阶可导,且
f(1) = 6,
f'(1) = 0,且当
x \ge 1 时,
x^2f''(x) - 2xf'(x) - 5f(x) \ge 0证明:当
x \ge 1 时,
f(x) \ge x^5 + \dfrac{5}{x}解答
利用不等式,找原函数构造辅助函数,然后利用单调性求解不等式
由于
x^2f''(x) - 2xf'(x) - 5f(x) = x^2f''(x)+2xf'(x) - (5xf'(x) + 5f(x))可得原函数为:
F(x) = x^2f'(x) - 5xf(x),则
F'(x) \ge 0,函数
F(x) 单调递增
又
F(1) = -30,故
F(x) \ge -30\quad\Rightarrow\quadx^2f'(x) - 5xf(x) + 30\ge 0不等式两侧同除
x^2 化简不等式:
y' - \dfrac{5}{x} y + \dfrac{30}{x^2} \ge 0观察到
y' - \dfrac{5}{x} y 可以用积分因子还原到:
y \cdot x^{-5}:
y'x^{-5} - \dfrac{5}{x^6}y + \dfrac{30}{x^7} = (yx^{-5} - \dfrac{5}{x^6} + C)' \ge 0在结论中凑出来即可证明完毕:
令
G(x) = yx^{-5} - 5 x^{-6} - 1,则
G(1) = 0G'(x) = y'x^{-5} -\dfrac{5}{x^6}y + \dfrac{30}{x^7} = \dfrac{1}{x^5}(y' - \dfrac{5}{x}y + \dfrac{30}{x^2}) \ge 0于是
G(x) 单调递增,故
G(x) \ge G(1) = 0\mathbf{QED}题目378
设
f(x) = \displaystyle\int_0^x t|x-t|dt - \dfrac{x^2}{6},试求:
(1)函数
f(x) 的极值和曲线
y = f(x) 的凹凸区间及拐点
(2)曲线
y = f(x) 与
x 轴围成的区域的面积及绕
y 轴旋转所得旋转体的体积
解答
有绝对值,先去绝对值,写出函数的分段:
f(x) = \begin{cases} \displaystyle\int_0^x (tx-t^2) dt - \dfrac{x^2}{6} & x \ge 0 \\\\ \displaystyle\int_0^x (t^2-tx) dt - \dfrac{x^2}{6} & x \lt 0 \end{cases}被积函数幂函数,不妨直接积分出来,有:
f(x) = \begin{cases} \dfrac{1}{6}x^3 - \dfrac{1}{6}x^2 & x \ge 0 \\\\ -\dfrac{1}{6}x^3 - \dfrac{1}{6}x^2 & x \lt 0 \end{cases}求导 并配合 导数定义,有:
f'(x) = \begin{cases} \dfrac{1}{2}x^2 - \dfrac{1}{3}x & x \ge 0 \\\\ -\dfrac{1}{2}x^2 - \dfrac{1}{3}x & x \lt 0 \end{cases},有 驻点
x = 0, \pm\dfrac{2}{3}易得有极大值
f(0) = 0,极小值
f(\dfrac{2}{3}) = -\dfrac{2}{81}, f(-\dfrac{2}{3}) = -\dfrac{2}{81}再求一阶导并配合 导数定义 有:
f''(x) = \begin{cases} x - \dfrac{1}{3} & x \gt 0 \\\\ -x - \dfrac{1}{3}& x \lt 0 \end{cases},易得拐点
(\dfrac{1}{3}, -\dfrac{1}{81}), (-\dfrac{1}{3}, -\dfrac{1}{81})体积可以直接用面积微元法:
[
\begin{aligned}
V = 2\pi \iint\limits_D |x| d\sigma = 2\pi \int_{0}^{1}dx\int_{f(x)}^0 x dy =
\dfrac{1}{3}\pi \int_0^1 (x^3 - x^4)dx = \dfrac{1}{60}\pi
\end{aligned}
]题目379
曲线:
y = e^{\frac{1}{x}}\sqrt{1+x^2} 的渐进线条数
解答
铅锤渐近线:
x=0没有水平,找斜渐近线可以考虑泰勒展开:
[
\begin{aligned}
e^{\frac{1}{x}}\sqrt{1+x^2} &= |x|e^{\frac{1}{x}}\sqrt{1+\frac{1}{x^2}}
\\\\
&= |x|(1+\frac{1}{x} + o(\frac{1}{x}))(1+\frac{1}{2x^2} + o(\frac{1}{x^2}))
\\\\
&= |x|(1+\frac{1}{x} + o(\frac{1}{x}))
\\\\
&= |x|+\frac{|x|}{x}+o(\frac{|x|}{x})
\end{aligned}
]故有些渐进线:
y = x + 1 和
y = -x - 1共三条
题目380
设
f(x) 在
[-2,2] 上二阶可导,且
|f(x)|\le1,又
[f(0)]^2 + [f'(0)]^2 = 4证明:
\exists \xi \in (-2, 2), s.t. f''(\xi) + f(\xi) = 0解答
[
(y^2 + y'^2)' = 2y'(y'' + y)
]故令
F(x) = f^2(x) + f'^2(x),则
F(0) = 4现需要凑出微分中值定理的条件,有Rolle中值定理和费马引理
由于端点信息不多(条件多是不等式关系)考虑能不能证明极值点在区间内取到
不妨用拉格朗日中值定理在分段点
0 处再将估计区间缩小:
f(0) - f(-2) = 2f'(\xi_1),
f(2) - f(0) = 2f'(\xi_2),有:
|f'(\xi_1)| = |\dfrac{f(0) - f(-2)}{2}| \le \dfrac{|f(0)| + |f(-2)|}{2} \le 1|f'(\xi_2)| = |\dfrac{f(2) - f(0)}{2}| \le \dfrac{|f(2)| + |f(0)|}{2} \le 1则在端点
\xi_1 处,
F(\xi_1) = f^2(\xi_1) + f'^2(\xi_1) \le 1 + 1 = 2,
\xi_2 同理
又
F(0) = 4 > 2,故最大值不在区间
[\xi_1,\xi_2] 的端点处取到,只能在区间内部的极大值点取到
不妨设该点为
\xi,由 Fermat 引理:
F'(\xi) = 0,即
f'(\xi)(f''(\xi) + f(\xi)) = 0
还需证明处该点处,
f'(\xi) 不为零才能得证,可以用反证法:假设
f'(\xi) = 0则有:
F(\xi) = f^2(\xi) + f'^2(\xi) < 2 < F(0) 与
\xi 是极大值点矛盾
故
f'(\xi) \ne 0,得证:
f''(\xi) + f(\xi) = 0