前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >ADRC自抗扰控制,有手就行「建议收藏」

ADRC自抗扰控制,有手就行「建议收藏」

作者头像
全栈程序员站长
发布2022-08-31 15:15:39
2.3K0
发布2022-08-31 15:15:39
举报
文章被收录于专栏:全栈程序员必看

大家好,又见面了,我是你们的朋友全栈君。

ADRC自抗扰控制,有手就行

  关于ADRC的优点本人不会赘述,毕竟作为一个ADRC算法都推导不出来的应用工程师,最希望看到的就是有手就行的操作方法。ARC的缺点就显而易见,就是参数多,一环ADRC大概就有11个参数,但一个粗略的效果很快就出来。本文所有的言论仅以我最近的一次速度闭环控制经验之谈,并没有经过大量的实验验证其绝对正确性,慎用(注:文中公式来自于csdn用户:遥远的乌托邦,有稍作修改)。   ADRC说白了就是PID的升级版,保留了PID的优点,改良了PID的缺点,其结构和PID一样,ADRC可以被看作三个作用效果的结合,分别是TD(跟踪微分器)、ESO(扩张状态观测器)、NLSEF(非线性控制律)。TD是为了防止目标值突变而安排的过渡过程;ADRC的灵魂就在于ESO,其作用下文给客官细细道来;NLSEF是为了改良PID直接线性加权(输出=比例+积分+微分)的缺点而引进的非线性控制律,其更符合非线性系统。

**TD跟踪微分器**

  从上图看到TD只有输入v0(系统的目标值),其输出的v1为v0的过渡过程,例如v0原先是0,突然将v0改成10,那么v0就有个突变,而v1不会随v0突变,而是慢慢的爬升到v0,不会有静差也不会有超调,v1的爬升时间取决于TD参数(具体TD参数在下文给出并做解析)调整,也可以调整成跟随v0突变。v2是v1的导数,即v1的微分。   其数学公式如下:

**ESO扩张状态观测器**

  上图中可以看出ESO的输入是有两项,一项是反馈值y,另一项是输出值u *b0(b0被称为系统系数)。输出则为z1、z2、z3;z1和z2是被称为系统的两个状态,z1的数值是跟随着输出y的,假若系统闭环成功的话,z1,、y、v1三个数值应该是一样的。z2是跟随y的微分的,加入系统闭环成功的话,z2、y的微分、v2三个数值应该是一样的。z3是系统扩张的一个状态,观测的是系统的总扰动,z3是自抗扰的灵魂所在。   ESO数学公式:

**NLSEF非线性控制律**

  NLSEF输入是e1(e1=v1-z1)、e2(e2=v2-z2),其输出是u1,u1并没有叠加系统总扰动补偿,它只是NLSEF的输出,并不是系统的最终输出。系统最终的输出是直接作用到被控对象的量u(u=u-z3/b)。   w(t)是假定的一个系统总扰动。   NLSEF的数学公式有几种那么多,本人仅使用了第二种:

**ADRC程序c语言版**

代码语言:javascript
复制
/******************ADRC program with C******************** // write by suitcalaw // copy by the high hand net world // https://blog.csdn.net/b457738242 **********************2020-12-07*************************/

//参数区,这11个就是需要用户整定的参数
/****************TD**********/
float r = 0,//快速跟踪因子
      h = 0;//滤波因子,系统调用步长

/**************ESO**********/
float b       = 0,//系统系数
      delta   = 0,//delta为fal(e,alpha,delta)函数的线性区间宽度
      belta01 = 0,//扩张状态观测器反馈增益1
	  belta02 = 0,//扩张状态观测器反馈增益2
	  belta03 = 0;//扩张状态观测器反馈增益3
	  
/**************NLSEF*******/
float alpha1 = 0,//
      alpha2 = 0,//
      belta1 = 0,//跟踪输入信号增益
      belta2 = 0;//跟踪微分信号增益
	  
	  
/*****************************fhan函数*********************************/
float fhan(float x1,float x2,float r,float h)
{ 
   
 /*****************************第一套************************/
// float d = 0,
// a = 0,
// a0 = 0,
// a1 = 0,
// a2 = 0,
// y = 0,
// fhan = 0;
// 
// d = r*h*h;
// a0 = h*x2;
// y = x1+a0;
// a1 = sqrtf(d*(d+8*fabsf(y)));
// a2 = a0 + sign(y)*(a1 - d)/2.0;
// a = (a0+y)*(sign(y+d)-sign(y-d))/2.0 + a2*(1-(sign(y+d)-sign(y-d))/2.0);
// fhan = -r*(a/d)*(sign(y+d)-sign(y-d))/2.0 - r*sign(a)*(1-(sign(a+d)-sign(a-d))/2.0);
 /******************************第二套**********************/
	float deltaa  =0,
		  deltaa0 =0,
	      y       =0,
	      a0      =0,
	      a       =0,
	      fhan    =0;
	
	deltaa = r*h;
	deltaa0 = deltaa*h;
	y=x1+x2*h;
	a0 = sqrtf(deltaa*deltaa+8*r*fabsf(y));
	if(fabsf(y)<=deltaa0)
		a=x2+y/h;
	else
		a=x2+0.5*(a0-deltaa)*sign(y);
	if(fabsf(a)<=deltaa)
		fhan = -r*a/deltaa;
	else
		fhan = -r*sign(a);
	
  return fhan;
}
/************************************sign函数***************************/
float sign(float x)
{ 
   
	if(x>0)
		return 1;
	else if(x<0)
		return -1;
	else
		return 0;
}
/*******************************fal函数**********************************/
float fal(float e,float alpha,float delta)
{ 
   
  float result = 0,fabsf_e = 0;
  
  fabsf_e = fabsf(e);
  
  if(delta>=fabsf_e)
    result = e/powf(delta,1.0-alpha);
  else //if(delta<fabsf_e)
    result = powf(fabsf_e,alpha)*sign(e);
 
 return result;     
}
//中间变量区,不需要用户管理以及赋值
/****************TD*******************/
float x1 = 0,//跟踪输入
      x2 = 0,//跟踪输入的微分
/****************ESO******************/
      e  = 0,//误差
	  z1 = 0,//跟踪反馈值
	  z2 = 0,//跟踪反馈值的而微分
	  z3 = 0,//跟踪系统的扰动(总扰动)
/**************NLSEF******************/
      u = 0;//输出值
/********************************ADRC************************************/
float ADRC(float v,float y)  // 参数:v:输入的目标值; y:反馈值
{ 
   
  float u0 = 0,
        e1 = 0,
		e2 = 0;
/******************************TD****************************************/
  x1 = x1 + h*x2;
  x2 = x2 + h*fhan(x1-v,x2,r,h);
/******************************ESO***************************************/
  e = z1 - y;
  z1 = z1 + h*(z2-belta01*e);
  z2 = z2 + h*(z3-belta02*fal(e,0.5,delta)+b*u);
  z3 = z3 + h*(-belta03*fal(e,0.25,delta));
/******************限幅,ADRC正常的话不会达到限幅条件********************/
  if(z1>=30000) z1=30000;
  if(z1<=-30000) z1 = -30000;
  if(z2>=30000) z2=30000;
  if(z2<=-30000) z2 = -30000;
  if(z3>=30000) z3=30000;
  if(z3<=-30000) z3 = -30000;
/******************************NLSEF*************************************/
  e1 = x1 - z1;
  e2 = x2 - z2;
  
  u0 = belta1*fal(e1,alpha1,delta) + belta2*fal(e2,alpha2,delta);//其中0<alpha1<1<alpha2
  
  u = u0 - z3/b;
  
  return u;
}

  代码是根据上面的公式直接撸过来的,下图是ADRC的11个参数,就是我们需要整定的参数了。

**参数整定**

  参数整定的规律是先将TD参数整定好,再整定ESO和NLSEF。   TD的参数整定是最简单的,观测v1的输出和输入v0的线性,其跟随的快慢并没有规定一定要多快多慢,取决于你想要的效果。TD参数只有两个:快速因子r 和滤波因子h 。其中,r 与跟踪速度呈正相关,然而,随之带来的是噪声放大的副作用;h与滤波效果呈正相关,但当h增大时,跟踪信号的相位损失也会随之增加。滤波因子经常取值为ADRC控制周期,比如1ms调用一次,h就是0.001,这也不是死定的,可以根据自己的效果做细微调整。

TD随动跟踪效果图

  ESO共有b、delta、belta01、belta02、belta03共5个参数,其中delta取值范围在5h<=delta<=10h,h为ADRC控制周期。参数整定可以先将b定下来,比如取1或者2(最好还是能够知道你的二阶系统系数),然后先后调整belta01、belta02、belta03,观测z1能不能够很好的跟随反馈y,如果是,那么大概参数就调好了;如果不是,可以改动一下b,还是不行的话就得认认真真的检测一下反馈y是不是出了什么问题,比如变量数据类型转换有没有做好。如果懂得自己在输出中加入随机数(白噪声),注意幅值不能过大,观测一下z3是不是能够很好的观测到随机扰动。若以上两个条件都成立,那么ADRC就几乎被整定好了。   NLSEF参数有alpha1,alpha2,belta1,belta2四个,其中0<alpha1<1<alpha2。belta1和belta2则视效果而定,通常ESO和NLSEF一起调,在整定ESO参数时,可以先把delta1和delta2定为1,再调ESO,待ESO有一定效果后,反复调整ESO参数无果,可以加入NLSEF参数整定,取得更好的效果。   以上是本人的一次电机闭环ADRC的经历,其中曲曲折折,非自动化专业的我,跟着论文也推不出ADRC算法,只好这样先用着,效果也显著。我还是会继续修读自动控制原理,终有一天也会将ADRC算法推导明白,再细细分析。如有错误,也请见谅,如有侵犯,请联系修改。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/144267.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年5月1,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • ADRC自抗扰控制,有手就行
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档