前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据湖(十二):Spark3.1.2与Iceberg0.12.1整合

数据湖(十二):Spark3.1.2与Iceberg0.12.1整合

原创
作者头像
Lansonli
发布2022-07-08 06:27:35
1.9K2
发布2022-07-08 06:27:35
举报
文章被收录于专栏:Lansonli技术博客

Spark3.1.2与Iceberg0.12.1整合

Spark可以操作Iceberg数据湖,这里使用的Iceberg的版本为0.12.1,此版本与Spark2.4版本之上兼容。由于在Spark2.4版本中在操作Iceberg时不支持DDL、增加分区及增加分区转换、Iceberg元数据查询、insert into/overwrite等操作,建议使用Spark3.x版本来整合Iceberg0.12.1版本,这里我们使用的Spark版本是3.1.2版本。

一、​​​​​​​​​​​​​​向pom文件导入依赖

在Idea中创建Maven项目,在pom文件中导入以下关键依赖:

代码语言:javascript
复制
<!-- 配置以下可以解决 在jdk1.8环境下打包时报错 “-source 1.5 中不支持 lambda 表达式” -->
<properties>
  <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
  <maven.compiler.source>1.8</maven.compiler.source>
  <maven.compiler.target>1.8</maven.compiler.target>
</properties>

<dependencies>
    <!-- Spark-core -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.12</artifactId>
        <version>3.1.2</version>
    </dependency>

    <!-- Spark与Iceberg整合的依赖包-->
    <dependency>
        <groupId>org.apache.iceberg</groupId>
        <artifactId>iceberg-spark3</artifactId>
        <version>0.12.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.iceberg</groupId>
        <artifactId>iceberg-spark3-runtime</artifactId>
        <version>0.12.1</version>
    </dependency>

    <!-- avro格式 依赖包 -->
    <dependency>
        <groupId>org.apache.avro</groupId>
        <artifactId>avro</artifactId>
        <version>1.10.2</version>
    </dependency>

    <!-- parquet格式 依赖包 -->
    <dependency>
        <groupId>org.apache.parquet</groupId>
        <artifactId>parquet-hadoop</artifactId>
        <version>1.12.0</version>
    </dependency>

    <!-- SparkSQL -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.12</artifactId>
        <version>3.1.2</version>
    </dependency>
    <!-- SparkSQL  ON  Hive-->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-hive_2.12</artifactId>
        <version>3.1.2</version>
    </dependency>
  <!--&lt;!&ndash;mysql依赖的jar包&ndash;&gt;-->
  <!--<dependency>-->
    <!--<groupId>mysql</groupId>-->
    <!--<artifactId>mysql-connector-java</artifactId>-->
    <!--<version>5.1.47</version>-->
  <!--</dependency>-->
    <!--SparkStreaming-->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming_2.12</artifactId>
        <version>3.1.2</version>
    </dependency>
  <!-- SparkStreaming + Kafka -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
        <version>3.1.2</version>
    </dependency>
  <!--&lt;!&ndash; 向kafka 生产数据需要包 &ndash;&gt;-->
  <!--<dependency>-->
    <!--<groupId>org.apache.kafka</groupId>-->
    <!--<artifactId>kafka-clients</artifactId>-->
    <!--<version>0.10.0.0</version>-->
    <!--&lt;!&ndash; 编译和测试使用jar包,没有传递性 &ndash;&gt;-->
    <!--&lt;!&ndash;<scope>provided</scope>&ndash;&gt;-->
  <!--</dependency>-->
    <!-- StructStreaming + Kafka -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql-kafka-0-10_2.12</artifactId>
        <version>3.1.2</version>
    </dependency>

  <!-- Scala 包-->
  <dependency>
    <groupId>org.scala-lang</groupId>
    <artifactId>scala-library</artifactId>
    <version>2.12.14</version>
  </dependency>

  <dependency>
    <groupId>org.scala-lang</groupId>
    <artifactId>scala-compiler</artifactId>
    <version>2.12.14</version>
  </dependency>

  <dependency>
    <groupId>org.scala-lang</groupId>
    <artifactId>scala-reflect</artifactId>
    <version>2.12.14</version>
  </dependency>

  <dependency>
    <groupId>log4j</groupId>
    <artifactId>log4j</artifactId>
    <version>1.2.12</version>
  </dependency>
  <dependency>
    <groupId>com.google.collections</groupId>
    <artifactId>google-collections</artifactId>
    <version>1.0</version>
  </dependency>

</dependencies>

二、SparkSQL设置catalog配置

以下操作主要是SparkSQL操作Iceberg,同样Spark中支持两种Catalog的设置:hive和hadoop,Hive Catalog就是iceberg表存储使用Hive默认的数据路径,Hadoop Catalog需要指定Iceberg格式表存储路径。

在SparkSQL代码中通过以下方式来指定使用的Catalog:

代码语言:javascript
复制
val spark: SparkSession = SparkSession.builder().master("local").appName("SparkOperateIceberg")
  //指定hive catalog, catalog名称为hive_prod
  .config("spark.sql.catalog.hive_prod", "org.apache.iceberg.spark.SparkCatalog")
  .config("spark.sql.catalog.hive_prod.type", "hive")
  .config("spark.sql.catalog.hive_prod.uri", "thrift://node1:9083")
  .config("iceberg.engine.hive.enabled", "true")

  //指定hadoop catalog,catalog名称为hadoop_prod
  .config("spark.sql.catalog.hadoop_prod", "org.apache.iceberg.spark.SparkCatalog")
  .config("spark.sql.catalog.hadoop_prod.type", "hadoop")
  .config("spark.sql.catalog.hadoop_prod.warehouse", "hdfs://mycluster/sparkoperateiceberg")
  .getOrCreate()

三、使用Hive Catalog管理Iceberg表

使用Hive Catalog管理Iceberg表默认数据存储在Hive对应的Warehouse目录下,在Hive中会自动创建对应的Iceberg表,SparkSQL 相当于是Hive客户端,需要额外设置“iceberg.engine.hive.enabled”属性为true,否则在Hive对应的Iceberg格式表中查询不到数据。

1、创建表

代码语言:javascript
复制
//创建表 ,hive_pord:指定catalog名称。default:指定Hive中存在的库。test:创建的iceberg表名。
spark.sql(
      """
        | create table if not exists hive_prod.default.test(id int,name string,age int) using iceberg
      """.stripMargin)

注意:

1)创建表时,表名称为:${catalog名称}.${Hive中库名}.${创建的Iceberg格式表名}

2)表创建之后,可以在Hive中查询到对应的test表,创建的是Hive外表,在对应的Hive warehouse 目录下可以看到对应的数据目录。

2、插入数据

代码语言:javascript
复制
//插入数据
spark.sql(
  """
    |insert into hive_prod.default.test values (1,"zs",18),(2,"ls",19),(3,"ww",20)
  """.stripMargin)

3、查询数据

代码语言:javascript
复制
//查询数据
spark.sql(
  """
    |select * from hive_prod.default.test
  """.stripMargin).show()

结果如下:

在Hive对应的test表中也能查询到数据:

4、删除表

代码语言:javascript
复制
//删除表,删除表对应的数据不会被删除
spark.sql(
  """
    |drop table hive_prod.default.test
  """.stripMargin)

注意:删除表后,数据会被删除,但是表目录还是存在,如果彻底删除数据,需要把对应的表目录删除。

四、用Hadoop Catalog管理Iceberg表

使用Hadoop Catalog管理表,需要指定对应Iceberg存储数据的目录。

1、创建表

代码语言:javascript
复制
//创建表 ,hadoop_prod:指定Hadoop catalog名称。default:指定库名称。test:创建的iceberg表名。
spark.sql(
  """
    | create table if not exists hadoop_prod.default.test(id int,name string,age int) using iceberg
  """.stripMargin)

注意:

1)创建表名称为:${Hadoop Catalog名称}.${随意定义的库名}.${Iceberg格式表名}

2)创建表后,会在hadoop_prod名称对应的目录下创建该表

2、插入数据

代码语言:javascript
复制
//插入数据
spark.sql(
  """
    |insert into hadoop_prod.default.test values (1,"zs",18),(2,"ls",19),(3,"ww",20)
  """.stripMargin)

3、查询数据

代码语言:javascript
复制
spark.sql(
  """
    |select * from hadoop_prod.default.test
  """.stripMargin).show()

4、创建对应的Hive表映射数据

在Hive表中执行如下建表语句:

代码语言:javascript
复制
CREATE TABLE hdfs_iceberg  (
  id int, 
  name string,
  age int
)
STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler' 
LOCATION 'hdfs://mycluster/sparkoperateiceberg/default/test' 
TBLPROPERTIES ('iceberg.catalog'='location_based_table');

在Hive中查询“hdfs_iceberg”表数据如下:

5、删除表

代码语言:javascript
复制
spark.sql(
  """
    |drop table hadoop_prod.default.test
  """.stripMargin)

注意:删除iceberg表后,数据被删除,对应的库目录存在。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • ​Spark3.1.2与Iceberg0.12.1整合
    • 一、​​​​​​​​​​​​​​向pom文件导入依赖
      • 二、SparkSQL设置catalog配置
        • 三、使用Hive Catalog管理Iceberg表
          • 1、创建表
          • 2、插入数据
          • 3、查询数据
          • 4、删除表
        • 四、用Hadoop Catalog管理Iceberg表
          • 1、创建表
          • 2、插入数据
          • 3、查询数据
          • 4、创建对应的Hive表映射数据
          • 5、删除表
      相关产品与服务
      数据湖计算 DLC
      数据湖计算DLC(Data Lake Compute,DLC)提供了敏捷高效的数据湖分析与计算服务。服务采用无服务器架构(Serverless),开箱即用。使用标准SQL语法即可完成数据处理、多源数据联合计算等数据工作,有效降低用户数据分析服务搭建成本及使用成本,提高企业数据敏捷度。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档